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a b s t r a c t

An exact solution is provided for a discrete analog of each of the two Sommerfeld diffraction problems using

a triangular lattice model, with nearest neighbor interactions, deforming in the anti-plane direction. The dis-

crete Helmholtz equation with time-harmonic data prescribed on semi-infinite row(s) of lattice sites is solved

using the discrete Wiener–Hopf method. An asymptotic expression of the exact solution, given in the form of

a contour integral, has been obtained in far field using the standard approximation of the diffraction integrals

based on the method of stationary phase. In case of the rigid constraint diffraction, the displacement of par-

ticles on the semi-infinite row complementing the constrained lattice sites, as well as on the adjacent row, is

presented in closed form as a discrete convolution. For the crack diffraction problem, the length of both types

of slant bonds on the semi-infinite row complementing the crack, as well as the crack opening displacement,

is given in a similar form but in terms of the Fourier coefficients, of the associated Wiener–Hopf kernel, which

are not available in closed form. The displacement field associated with the scattered waves at sites far from

the defect tip, as well as few sites near the tip, is compared graphically with that of a numerical solution on

a finite grid. Both discrete Sommerfeld problems are naturally relevant to their continuous counterparts, in-

volving the traditional Helmholtz equation, that model the diffraction of electromagnetic and acoustic waves

by a semi-infinite screen, based on 7-point discretization on a triangular grid.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sommerfeld edge diffraction occupies a distinguished status in

the mechanics of waves (Born and Wolf, 1999; Felsen and Marcu-

vitz, 1973; Sommerfeld, 1896; Sommerfeld, 1964). Diffraction of time

harmonic waves, by straight-edged semi-infinite half planes, is as-

sociated with the ‘twin’ problems in diffraction theory, originally

solved by Sommerfeld (1896). Indeed, Sommerfeld’s solutions were

the first in the history of such problems and were presented, a cen-

tury ago, as solutions of the two dimensional Helmholtz equation

with boundary conditions on a half plane of either Dirichlet or Neu-

mann. A large class of methods have been applied to solve the Som-

merfeld problems and its variants (Chambers, 1954; Copson, 1946;

Friedlander, 1946; Lamb, 1907) (also see for example, (Achenbach,

1973; Bouwkamp, 1954; Felsen and Marcuvitz, 1973; Jones, 1964;

Noble, 1958)). Out of all known approaches, however, the formu-

lation using an inhomogeneous Wiener–Hopf integral equation has

been most popular (Noble, 1958; Wiener and Hopf, 1931). In recent

works of the author (Sharma, 2015a; 2015b; 2015c; 2015d), the orig-
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inal Sommerfeld problems have been formulated as discrete Sommer-

feld problems on a square lattice and are analyzed using the discrete

Wiener–Hopf method (Fel’d, 1958; Karp, 1952; Paley and Wiener,

1934; Wiener and Hopf, 1931). As the classical Sommerfeld problems

also appear in elastodynamics, in the form of diffraction of elastic

shear wave by either a rigid constraint or a crack (Achenbach, 1973;

Harris, 2004), the papers (Sharma, 2015a; 2015b; 2015c; 2015d) are

motivated by a discrete analog of this particular mechanical example

on square lattices. The author’s recent works employ the model, as

well as several definitions and notational devices, used by Maradudin

(1958); Maradudin et al. (1971); Slepyan (1982); 2002). In this pa-

per, the discrete Sommerfeld problems, as the scattering problems

on a grid, have been posed on triangular lattice using the 7-point

stencil (Bilbao, 2004; Collatz, 1960; Kantorovich and Krylov, 1958)

for the two dimensional Helmholtz equation. The triangular lattice,

according to the usage in this paper, is also known as hexagonal lat-

tice (Hahn, 2002) and it has appeared several times in the context of

numerical analysis, for example, see Mullen and Belytschko (1982);

Zingg and Lomax (1993), as well as mechanics (Dean, 1963; Fineb-

urg and Marder, 1999; Kessler, 1999; Lifshitz and Kosevich, 1966;

Makwana and Craster, 2013; Marder, 2004; Marder and Gross, 1995;

Marder and Liu, 1993). A well known discrete mechanical model of

crack (Slepyan, 2002) has been adapted in problem formulation (see
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Fig. 1. Triangular lattice T as a part of three dimensional purely crystalline body with close packed layers. The anti-plane assumption, with a mode III crack, is schematically shown

in both figures appearing below.

also Fineburg and Marder, 1999; Kessler, 1999; Marder and Gross,

1995).

From a point of view of the applications to crystalline materials,

the square lattice model is not as realistic as triangular lattice, since

close-packed planes occur frequently in several interesting crystals

(Born and Huang, 1954; Burke, 1966; Hahn, 2002; Kosevich, 2005)

in the form of triangular lattice. Indeed, the fcc and hcp structures

are close packed (Conway and Sloane, 1988; Hahn, 2002; IUCr, 1992),

where atoms on specific crystallographic planes in the lattice are in

the closest possible proximity to one another, i.e., arranged in the

form of triangular lattices. For instance, see Fig. 1 for an artwork-

based illustration of such three dimensional configuration (the ar-

rangement of second layer in figure on top right also indicates the

challenge associated with the assumption of anti-plane motion). The

triangular lattice model is also deemed to find some relevance in

the investigations into the qualitative properties of out-of-plane (also

called anti-plane) deformation of thin layers with the close packed

planes parallel to the layer plane. Gronckel (1991); Gong et al (1999);

Ohtake and O. Yabuhara (2011) presented some experimental obser-

vations of such triangular lattice structures (see also Pierański and

Finney, 1979). A survey of the enormous volume of the research works

in thin films, monolayers, etc. (Ohring, 2002), even with the restric-

tion of focus on applications relevant to the wave scattering by struc-

tural defects, is not an objective of this paper.

Although the discrete formulation has been studied recently by

Sharma (2015a); 2015b); 2015c); 2015d) using a square lattice model,

its extension to a triangular lattice model is not direct. Similar to the

analysis on square lattice (Sharma, 2015a; 2015b), Jones’ approach for

diffraction problems (Jones, 1952; 1964; Noble, 1958) motivates the

solution of the discrete Sommerfeld problem of diffraction involving a

semi-infinite crack and rigid constraint on a triangular lattice. As the

model is discrete, in place of the continuous Fourier transform, the

discrete Fourier transform (Böttcher and Silbermann, 2006; Gohberg

and Feldman, 1974; Krein, 1962; Slepyan, 2002) has been employed.

The factorization of Wiener–Hopf kernel stated in this paper, a cru-

cial step in any successful application of the Wiener–Hopf technique

(Noble, 1958), is explicit in case of rigid constraint, though that is not

so in case of crack. Due to certain geometric symmetry, the problem

formulation, as well as its solution, for the rigid constraint diffraction

is almost identical to the problem, and its solution, for a rigid con-

straint in square lattice (Sharma, 2015b; 2015d). On the contrary, the

problem and solution for crack are quite different due to the presence

of two types of bonds in each row of triangular lattice. The peculiar

structure in crack problem is manifest in its solution and involves a

combination of two ‘types’ of incident waves. This situation recurs in

the case of hexagonal lattice with zigzag constraint (Sharma, 2015e)

leading to similarities, between crack diffraction problem on trian-

gular lattice and zigzag constraint diffraction problem on hexagonal

lattice (honeycomb).

For convenience, the ‘form’ of both exact solutions has been in-

tentionally chosen to be the same as its counterpart for diffraction

by a semi-infinite crack and a semi-infinite rigid constraint in square

lattice, as stated in Sharma (2015a) and Sharma (2015b), respectively.

The benefit of this choice appears in the section on asymptotic anal-

ysis of the diffracted wave in far field, since it is analogous to that

presented in Sharma (2015a) and Sharma (2015b). A rigorous proof

of existence and uniqueness of the solution of both problems, con-

structed in this paper, and on the same lines (based on the theory of

Toeplitz operators) as detailed for a square lattice (see Sharma, 2015c

and Sharma, 2015d), is present in Sharma (2015f) for the dissipative

case.

Aside from the construction of exact solution, the far field approx-

imation of scattered wave field has been also provided in this paper,

based on the application of traditional stationary phase approxi-

mation (Courant and Hilbert, 1953; Erdélyi, 1955) to the diffraction

integral (Born and Wolf, 1999; Felsen and Marcuvitz, 1973) (similar

to its application in (Sharma, 2015a)). These expressions, in the form

of graphical plots, for some frequencies and a fixed, but arbitrary,

angle of incidence, have been compared with a numerical solution

of the diffraction problem on a finite grid (Berenger, 1994; Makwana

and Craster, 2013; Singer and Turkel, 2004). In addition to this, a

closed form expression, obtained by expanding certain functions in

power series, for the displacement at lattice sites ahead of, as well

as adjacent to, the semi-infinite rigid constraint is provided. Closed

form expressions for the bond lengths ahead of the semi-infinite

crack as well as the crack opening displacement are also provided

in the same way. Again, the results, in the form of graphical plots,

for some frequencies and a fixed angle of incidence, provide a
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