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a b s t r a c t

A first degree homogeneous yield function is completely determined by its restriction to the unit sphere

of the stress space; if, in addition, the function is isotropic and pressure independent, its restriction to the

octahedric unit circle, the π-circle, is periodic and determines uniquely the function. Thus any homogeneous,

isotropic and pressure independent yield function can be represented by the Fourier series of its π-circle

restriction. Combinations of isotropic functions and linear transformations can then be used to extend the

theory to anisotropic convex functions. The capabilities of this simple, yet quite general methodology are

illustrated in the modeling of the yielding properties of AZ31B magnesium alloy.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the phenomenological theory of plasticity, the plastic response

of metals is described by a yield surface and an associated flow rule.

The initial yield surfaces of BCC and FCC alloys, e.g., steel and alu-

minum, are, within an acceptable approximation, symmetric with re-

spect to the origin of the stress space. By contrast, the initial yield sur-

faces of HCP-alloys, e.g., magnesium and titanium-alloys, are strongly

asymmetric due to twinning at constituent level, e.g., Bilby and

Crocker (1965), Christian and Mahajan (1995), Balasubramanian and

Anand (2002), Graff et al. (2007), Kouchmeshky and Zabaras (2009);

and, even if initially symmetric, a yield surface may become asym-

metric due to the residual stresses induced by plastic deformation,

e.g., Ortiz and Popov (1983), Zatarin et al. (2004), Barlat et al. (2011).

While the description of symmetric yield surfaces, by employing

symmetric yield functions, is a relatively well developed subject, e.g.,

Bron and Besson (2004), Barlat et al. (2005), Banabic et al. (2005),

Vegter and Boogard (2006), Barlat et al. (2007), Soare and Barlat

(2010), Huang and Man (2013), a general methodology for develop-

ing asymmetric yield functions is still lacking. This may be due to

the more sophisticated geometry of an asymmetric surface, which

requires a more complex approach. However, the increasing interest,

especially from the transportation industry, in lighter materials such

as Mg or Ti-alloys, may provide enough motivation for accepting a

higher level of complexity in the modeling of a yield surface.
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As previous contributions to the problem, we note the work of

Liu et al. (1997), where Hill’s quadratic was extended via an alge-

braic combination of orthotropic extensions of the J2 := (1/2)|σ′| and

I1 := tr(σ ) invariants of the stress deviator σ′ and the stress tensor

σ , respectively; a similar approach was adopted later in Cazacu and

Barlat (2004), where an algebraic combination of orthotropic exten-

sions of J2 and J3 := det (σ ′) was employed, and further extended

to algebraic combinations of general homogeneous polynomials in

Soare et al. (2007); also, anisotropic extensions, via linear transfor-

mations, of particular isotropic asymmetric functions were proposed

by Plunkett et al. (2008) and Yoon et al. (2014).

Noteworthy, the function of Liu et al. (1997) incorporates asym-

metric yielding only through pressure-dependence. This approach

is subject to debate, for while it is true that pressure-dependence

does induce a certain yielding asymmetry, its magnitude is expected,

in general, to be small, as evidenced by the experiments of Spitzig

and Richmond (2014) on aluminum and steel; more importantly, the

nature of this asymmetry is qualitatively distinct from the “intrin-

sic” yielding asymmetry generated by asymmetric activation condi-

tions at crystal level in HCP-lattices. Indeed, in the absence of micro-

voids, the pressure-dependence of metals originates in non-Schmid

effects which are specific to the lattice arrangement. In particular,

Soare and Barlat (2014) have shown that a purely hydrostatic de-

viation from the Schmid law explains the experiments of Spitzig

and Richmond (2014), with aggregates of cubic crystals featuring no

plastic dilatancy and the normality rule holding in the deviatoric

sections of the macro yield surface; this holds true also for hexag-

onal lattices with elastic coefficients satisfying (in Voigt notation)

� := (c13 + c33) − (c12 + c11) = 0, a relationship representing the

http://dx.doi.org/10.1016/j.ijsolstr.2015.10.009

0020-7683/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ijsolstr.2015.10.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2015.10.009&domain=pdf
mailto:stefancgsoare@yahoo.com
http://dx.doi.org/10.1016/j.ijsolstr.2015.10.009


S.C. Soare, A.A. Benzerga / International Journal of Solids and Structures 80 (2016) 486–500 487

decoupling of the elastic response into volumetric and deviatoric

components. Among the HCP-metals of interest, magnesium has the

smallest deviation from this relationship, with |�| ≈ 2 GPa, and

hence a small plastic dilatancy is expected. The recent experiments

of Kondori and Benzerga (2014), where a plastic dilatancy of about

4% was reported for AZ31B under homogeneous uniaxial loading, ap-

pear to confirm the theory, although the reported dilatancy seems too

large to be generated by a pressure effect alone, Barrett et al. (2012).

Thus, in general, both “intrinsic” asymmetry and pressure-

dependence should be combined in order to obtain an accurate repre-

sentation of the overall yielding asymmetry observed in HCP-alloys.

This was recently attempted by Yoon et al. (2014) in their modeling

of AZ31, where an asymmetric pressure-independent function was

combined with a pressure dependent term in order to better cap-

ture the yielding asymmetry of AZ31. However, the magnitude of the

pressure-dependent term in the cited work is somewhat “arbitrary”

and the corresponding flow rule is left unspecified. In the absence of

an adequate experimental description of the pressure-dependence of

HCP-alloys, in this work pressure-dependence is neglected and the

classical normality rule is adopted.

For plastically anisotropic materials, a common approach nowa-

days consists of combining specific isotropic functions with

anisotropic linear transformations of the stress tensor (Barlat et al.,

2007; Bron and Besson, 2004; Karafillis and Boyce, 1993; Plunkett

et al., 2008; Yoon et al., 2014), the a priori convexity of the result-

ing anisotropic function for the whole range of its material parame-

ters being the primary motivation of this approach. This method has

variants depending on whether the isotropic function is taken to be

pressure-dependent or not (i.e., operating on the stress or its devia-

tor) and whether the linear transformation acts itself as a deviatoric

“projector”. For convenience, here the shorthand term “generator”

refers to the isotropic function whose argument is the transformed

stress, and is endowed with properties to be described in context. For

example, Plunkett et al. (2008) developed an asymmetric, pressure-

independent anisotropic yield criterion using a pressure-dependent

asymmetric generator. Here we shall use only pressure-independent

generators.

The modeling capabilities of the anisotropic functions obtained

via the linear transformation approach depend significantly on the

generators employed. Here, while retaining the linear transformation

approach for generating anisotropic extensions, we aim at develop-

ing a general methodology for describing any isotropic and pressure-

independent function, symmetric or not. This, in combination with

a simple, geometrical method for constructing new isotropic func-

tions, will allow us to exploit the linear transformation approach at its

full potential. In a similar context, an early sketch of a general theory

of (“plane-isotropic”) yield functions, based on trigonometric poly-

nomials, was outlined by Budiansky (1984), although only for plane

stress states and symmetric functions. We adopt the same approach,

but develop the arguments down to the practical level where appli-

cations can be developed with relative ease, in algorithmic manner.

2. Isotropic, pressure-independent asymmetric yield functions

for general stress states

We start with a brief review of the natural representation of

isotropic functions, the reader being directed to the literature for fur-

ther details on this classic topic of plasticity, e.g., Hill (1950). Let σ
denote the stress tensor, ei its principal directions, and σ i its princi-

pal values. A pressure independent, first order positive homogeneous

yield function f can be represented as

f (σ) = f (σ ′) = |σ ′| f (τ ′) (1)

where |σ| := √
σ · σ is the magnitude (or norm) of a second order

tensor, σ ′ := σ − tr(σ)/3 is the deviator of the stress σ , and τ ′ :=
σ′/|σ′| is its unit direction. Since the orientation of the principal frame

{ei} can be specified by, say, its three Euler angles ψ i with respect to

a material frame, the analytic representation of f can be further de-

tailed to

f (σ) = |σ ′| g(ψ1,ψ2,ψ3, τ ′
1, τ ′

2, τ ′
3)

with τ ′
i

denoting the principal values of the unit direction of the stress

deviator, related to those of σ by

τ ′
i = (σi − p)/|σ ′|, where p := tr(σ )/3

In this section we shall be concerned with the representation of

isotropic functions, functions that are invariant to any orthogonal

transformation of the material axes. Then, by applying three succes-

sive rotations to the body, one can bring the material axes along the

principal stress directions while leaving the yield function value un-

changed; hence:

f (σ) = |σ ′| g(τ ′
1, τ ′

2, τ ′
3) (2)

One can further apply a 90o rotation of the body about the principal

axis e1, leaving again the yield function value unchanged. This rota-

tion switches the principal stresses σ 2 and σ 3. With two other 90o

rotations about e2 and e3 available, and the yield function invariant

to any combination of them, it follows that the function g must be

symmetric:

g(τ ′
1, τ ′

2, τ ′
3) = g(τ ′

2, τ ′
1, τ ′

3) = g(τ ′
1, τ ′

3, τ ′
2) = . . . (3)

Eqs. (2) and (3) give the most general representation of an isotropic

scalar function (with one symmetric tensor argument). However, the

arguments of the g-function are not independent, since they are re-

lated by the two constraints |τ′| = 1 and τ ′
1

+ τ ′
2

+ τ ′
3

= 0. With the

π-plane1 defined by

�o := {σ |σ1 + σ2 + σ3 = 0}
of unit normal

no = (e1 + e2 + e3)/
√

3 (4)

the yield function is completely determined by the restriction of the

function g to the unit circle of the π-plane, which will be referred to

as the π-circle. In geometric terms, the yield surface σ = f (σ), with

σ denoting a measure of hardening, is a cylinder with generatrices

parallel to no. Let θ denote the polar angle on the π-circle, measured

counterclockwise starting from, say, g1, where gi denote the projec-

tions of ei onto �o. Due to the symmetries in Eq. (3), it is sufficient to

consider only the restriction of g to the sector [0, π /3] of the π-circle,

Fig. 1.

Indeed, symmetry about g1 (actually, about the plane that con-

tains g1 and is orthogonal to �o) reduces the range of θ from [0, 2π ]

to [0, π ]; the symmetry about g2 reduces it further to [0, 2π /3]; fi-

nally, the symmetry about g3 reduces the range of θ to [0, π /3]. Let

h = h(θ) denote the restriction of g to the π-circle. The final analytical

expression for the yield function f, featuring the isotropy and pressure

independence properties is then:

f (σ) = |σ ′| h(θ) (5)

with h : R −→ R+ uniquely determined by its restriction to the [0,

π /3] interval as follows: from [0, π /3], h is extended into [π /3, 2π /3]

by symmetry (corresponding to the symmetry about g3); then h is

extended to the interval [0, 2π ] by periodicity, with a 2π /3-period;

finally, h is extended from [0, 2π ] to the whole real axis by 2π-

periodicity. Hence h is an even 2π /3-periodic function. It can be rep-

resented, generally, as the cosine series:

h(θ) = a0/2 +
∑
k≥1

ak cos (3kθ) (6)

1 Since only the principal stresses are of interest here, we may regard the stress ten-

sor as a vector σ = σiei of the 3D-space.
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