International Journal of Solids and Structures 80 (2016) 545-560

International Journal of Solids and Structures

SOLIDS. AND
STRUCTURES

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijsolstr

Homogenization schemes for aging linear viscoelastic matrix-inclusion
composite materials with elongated inclusions

@ CrossMark

F. Lavergne?, K. Sab®* ]. Sanahuja® M. Bornert?, C. Toulemonde”

a Université Paris-Est, Laboratoire Navier (ENPC, IFSTTAR, CNRS), 77455 Marne-la-Vallée Cedex, France
b Département Mécanique des Matériaux et des Composants, EDF R&D, Site des Renardiéres, Avenue des Renardiéres, 77818 Moret-Sur-Loing Cedex, France

ARTICLE INFO

ABSTRACT

Article history:

Received 18 July 2015

Revised 12 October 2015
Available online 22 October 2015

Keywords:

Aging

Creep
Homogenization
Ellipsoid
Concrete

An extension of the Mori-Tanaka and Ponte Castafieda-Willis homogenization schemes for linear elastic
matrix-inclusion composites with ellipsoidal inclusions to aging linear viscoelastic composites is proposed.
To do so, the method of Sanahuja (2013) dedicated to spherical inclusions is generalized to ellipsoidal in-
clusions under the assumption of time-independent Poisson’s ratio. The obtained time-dependent strains
are successfully compared to those predicted by an existing method dedicated to time-shift aging linear vis-
coelasticity showing the consistency of the proposed approach. Moreover, full 3D numerical simulations on
complex matrix-inclusion microstructures show that the proposed scheme accurately estimates their over-
all time-dependent strains. Finally, it is shown that an aspect ratio of aggregates in the range 0.3-3 has no
significant influence on the time-dependent strains of composites with per-phase constitutive relations rep-
resentative of a real concrete.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Eshelby’s solution (Eshelby, 1957) of an ellipsoidal inclusion in an
elastic material has been used in various ways to upscale the behav-
ior of composite materials. The Mori-Tanaka (Benveniste, 1987; Mori
and Tanaka, 1973) scheme and the Ponte Castafieda-Willis scheme
(Ponte Castafieda and Willis, 1995) have been designed to retrieve
the elastic behavior of composites featuring spherical (Weng, 1984)
or elongated inclusions (Tandon and Weng, 1984). Such mean-field
homogenization schemes based on Eshelby’s solution have been cou-
pled to the correspondence principle (Lee, 1961; Mandel, 1966) to es-
timate the time-dependent strains of non-aging viscoelastic materi-
als (Brinson and Lin, 1998; Lévesque et al., 2007; Wang and Weng,
1992): the Laplace-Carson transform turns the non-aging problem
into a set of formal elastic problems in complex space. For composite
materials made of elastic inclusions and a matrix modeled by a time
shift method, such as many plastic materials and glasses (Odegard
and Bandyopadhyay, 2011; Struik, 1978; Sullivan, 1990), the Laplace-
Carson transform may still be applied in the equivalent time space
(Lavergne et al.,, 2015a; Zheng and Weng, 2002). Yet, inverting the
Laplace-Carson transform is still a compromise between accuracy
and stability since this operation is ill-conditioned. This is one of the
reasons why modern homogenization methods operate in the time
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domain (Berbenni et al., 2015; Lahellec and Suquet, 2007; Masson
etal, 2012; Tran et al., 2011).

Regarding aging viscoelastic materials, a closed-form solution has
been proposed by Sanahuja (2013) to handle the case of spherical
inclusions in an aging linear viscoelastic matrix. Moreover, a reli-
able numerical procedure has been proposed to efficiently estimate
the time-dependent strains. This procedure does not require invert-
ing the Laplace-Carson transform and is able to handle any isotropic
compliance.

This paper is devoted to validating and extending Sanahuja’s
method to ellipsoidal inclusions. Yet, the extension is limited to
isotropic aging viscoelastic matrices featuring time-independent
Poisson’s ratio in the sense of Hilton and Yi (1998).

This extension may be valuable to study cementitious materi-
als. Indeed, modern formulations of concrete may include aggregates
(de Larrard, 1999), steel fibers, expanded polystyrene particles (Babu
and Babu, 2003; Roy et al., 2005) or wood shavings (Bederina et al.,
2007) as inclusions and such inclusions can change the viscoelastic
properties of the material (Chern and Young, 1989).

A recent numerical study has shown that the size distribu-
tion and the shape of aggregates have little effect on the time-
dependent strains of concretes made with non-aging cementitious
matrices(Lavergne et al., 2015b). Full 3D numerical simulations and
semi-analytical homogenization schemes delivered similar estimates
of the time-dependent strains. Yet, this study was limited to polyhe-
dral aggregates with an aspect ratio close to 1 (the aggregates were
neither flat nor elongated). Consequently, there is a question left:
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does the aspect ratio of the aggregates affect the time-dependent
strains of concrete made with aging cementitious matrices? To an-
swer this question, the following steps have been carried out:

« In Section 2, the method of Sanahuja (2013) is extended to el-
lipsoidal inclusions. Eshelby’s solution for an isotropic aging vis-
coelastic matrix featuring a time-independent Poisson’s ratio is
presented. The strain within the inclusion is still uniform and
a time-dependent Eshelby’s tensor may be defined. Then, the
closed-form of the time-dependent localization tensor is derived
using the Volterra operator. Finally, the Mori-Tanaka estimate of
the overall viscoelastic behavior is obtained. The more sophis-
ticated Ponte Castafieda-Willis linear estimate, which accounts
separately for inclusion shape effects and effects of the spatial
distribution of inclusion centers, is formally similarly extended
to composites with elastic inclusions embedded in an aging vis-
coelastic matrix.

In Section 3, the numerical procedure described in Sanahuja
(2013) is used to evaluate the proposed homogenization schemes.
The resulting estimates of the overall time-dependent strains are
compared to existing ones for a fiber-reinforced polymer with a
time-shift aging viscoelastic matrix. Then, a complex microstruc-
ture featuring 60% of polyhedral elastic aggregates embedded in
an aging viscoelastic cementitious matrix is considered. The esti-
mates of the time-dependent strains as evaluated by the method
of Sanahuja (2013) and by full 3D numerical computations are
first compared for spherical inclusions. Finally, the proposed ex-
tension to ellipsoidal inclusions of the Mori-Tanaka and Ponte
Castafieda-Willis schemes are used to estimate the overall re-
sponse of concrete-like materials. In particular, it will be shown
that the aspect ratio of aggregates used in concrete does not sig-
nificantly affect their viscoelastic behavior.

2. Extension of the model of Sanahuja to ellipsoidal inclusions
2.1. Estimating the overall time-dependent strains

2.1.1. Aging viscoelasticity

The stress tensor o(t) in a viscoelastic material depends on the
history of strain tensor &(t). If the constitutive law is linear, the Boltz-
mann superposition principle states that the material properties are
defined by a relaxation function (fourth order tensor), C(t,t’), such
that:

o (t) = /_ C e t)de(t)

where the integral is a Stieltjes integral. Similarly, the compliance
function (fourth order tensor), J(t, t’) is such that:

t
e = [ 3@.t)do(t)
—00
If the elapsed time since loading is the only relevant parameter, the
material is non-aging;:
Ity =St —t)

However, the assumption of nonaging is not made in the following
derivations. If the viscoelastic behavior is isotropic, a spherical relax-
ation function K(t, t') and a deviatoric relaxation function G(t, t') are
defined, such that:

p(t) = [ " 3K(. t)de(t)

a4 (t) = / " 26(t. t)det (¢

where e(t) = tr(e(t))/3, p(t) =tr(a(t))/3. The tensors ¢¥(t) and
£4(t) are respectively the deviatoric parts of o(t) and &(t):

ofj(t) = ajj(t) — p(t)3;;

efi(6) = &ij(6) —e(t)3;;
where §;; is the Kronecker symbol.

2.1.2. The homogenization method of Sanahuja

The homogenization method of Sanahuja (2013) operates in the
time domain to deal with a composite featuring isotropic aging vis-
coelastic phases. A spherical inclusion featuring a linear viscoelastic
isotropic behavior (Ki(t, t'), Gi(t, t')) is embedded in an infinite matrix
featuring a linear viscoelastic isotropic behavior (Ki(t, t'), Gm(t, t'))
and a strain history E(t) is applied far from the inclusion.

As usually for linear elasticity, the solution of this problem pro-
vides the exact solution of the localization problem of a composite
made of such inclusions embedded in the matrix, in the so-called
"dilute limit”, i.e. for volume fractions of inclusions sufficiently low
so that mechanical interactions between inclusions can be neglected.
For isotropic composites, this localization solution is fully determined
when purely spherical or deviatoric overall strains histories E(t) are
considered. Sanahuja proved that the strain history in the inclusion
is uniform, with value &(t). In addition, a localization tensor A(t, t’) is
defined such that:

e(t) = [ AL, T) : dE(7)

To ease the computations, the Volterra operator has been introduced.
It reads:

foget)= [ " f(t ) deg(r 1)

for any scalar functions f and g. The identity element of the Volterra
operator H is defined from the Heaviside function:

S e

The value of the H function at t = t’ does not need to be specified. The
inverse of fin the sense of the Volterra operator is denoted as f~! so
that f~1o f = H.

The spherical part Ai(t, t') of A(t, t") reads:

A = (3K + 4Gn) ' o (3K + 4Gr)

The closed-form expression of the deviatoric part Ag(t, t') has been
computed as well:

Ag = H+2(2H + 3Dy) o (2G; o (2H + 3Dyy)
+Gu o (6H D)) (G — G)

where Dy = (Km + Gm) ™' 0 2Gm

These expressions provide functional relations between time his-
tories of spherical and deviatoric strain prescribed far away from the
inclusion and the induced uniform strain history in the latter. They
can be used to extend, at least from a formal point of view, to ag-
ing viscoelasticity any linear elastic homogenization scheme based
on Eshelby’s solution, by simply substituting the classical tensor dou-
ble contraction operations by Volterra operations. The resulting ex-
pressions will involve multiple time convolutions as well as Volterra
inversions, and will thus be rather involved.

To face this difficulty, numerical procedures to compute the
Volterra operator and its inverse proposed in Bazant (1972) are used
to turn these formula into a practical tool (Sanahuja, 2013). The es-
timate of the effective behavior of a concrete will be compared to
results of 3D numerical simulations in Section 3.3.1. It is to be men-
tioned that the method of Sanahuja produces an estimate of the effec-
tive behavior at once: the output is a matrix representing the global
linear viscoelastic behavior of the composite material over an initially
specified period of time. A single run of the method of Sanahuja han-
dles all loading directions at once while two full 3D numerical com-
putations are needed to simulate hydrostatic and shear creep tests.
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