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The elastic wave guide properties of a curved flexible pipe, idealised as a thin walled toroidal shell, are
under consideration in this paper. Two mathematical models of such a shell are developed and validated.
One model is analytical and is based on classical thin shell theory and the Galerkin’s method is being
employed. This provides an eigenvalue problem, from which the dispersion relation and the modal
vectors are extracted. The other model is numerical and utilises the wave finite element method. By
modelling a segment of the toroidal shell in a finite element environment, and exporting the mass and
stiffness matrices, another eigenvalue problem is formulated, and the dispersion relation and the modal
vectors are extracted. The two models back each other up with respect to validity and reliability.
They provide insight about which waves (travelling as well as evanescent), that are supported by the
toroidal shell. With this insight, it is possible to identify three regimes of wave motion, a curved beam
regime, a cylinder regime, and a torus regime, and to explain the differences between these regimes.
The identification of the regimes is based on analysing both dispersion diagrams and mode shapes.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible pipes are found in a wide range of manmade applica-
tions. Examples are risers used in the offshore industry, hydraulic
hoses, vacuum cleaner hoses, and so on. Also in biology flexible
pipes are found in fashion of blood vessels. Common for these
examples is that the pipes are used to guide fluids. Also in many
cases the pipes are submerged into a fluid, such as risers sub-
merged in the sea, or in a more or less viscid medium, such as
blood vessels suspended in the body tissue. Because the pipes
under consideration here are characterised as flexible, the effects
of fluid-structure interaction (FSI) need some sort of consideration
if one of these real life systems are to be analysed and modelled.
Often pipes are exposed to time varying loading. It could be struc-
tural induced vibrations from a shaking pump, or fluid induced
pulsations from a beating heart. In particular the offshore industry
experiences problems with flow induced vibrations in gas risers.
Besides resulting in severe tonal noise pollution to the working
environment these vibrations can potentially cause fatigue failure
primarily at end fittings and equipment attached to the risers, cf.
Goyder (2010) and Belfroid et al. (2007). In the cardiovascular sys-
tem many studies indicate that the shear stress between the blood
stream and the wall of the vessel plays a direct role in localisation
and initiation of deadly diseases like atherosclerosis, Ma and Ng

* Corresponding author. Tel.: +45 61776621.
E-mail address: jm@m-tech.aau.dk (J. Morsbel).

http://dx.doi.org/10.1016/j.ijsolstr.2015.08.009
0020-7683/© 2015 Elsevier Ltd. All rights reserved.

(2009) and Bessems et al. (2007). From these examples, it may
be noticed that the location of the excitation and the location of
where the vibrations are causing problems in general are not
coinciding. Thus the wave guide properties, describing which kind
of waves that potentially can travel along the pipe, must be a
cornerstone when studying these piping systems.

Depending on the stiffness properties of the pipe and the exci-
tation frequency, the wave guide properties have been successfully
modelled by regarding the structure as, respectively, elastic tubu-
lar beams if the flexibility is primarily present in the axial direction
and/or the excitation frequency is low, or as cylindrical shells if the
cross sectional flexibility is just as important as the axial and/or the
excitation frequency is higher. Disregarding FSI, both of these
approaches are rather trivial, and have been described in several
classical textbooks within this field.

Inclusion of FSI, on the other hand, complicates the problem.
Though, with respect to the wave guide properties of elastic
tubular beams with FSI, they were fully described by Padoussis
(1998), whereas the wave guide properties of cylindrical shells
with FSI where studied by Fuller and Fahy (1982), Pavic (1990),
Sorokin et al. (2004), and many more. For fairly thick-walled pipes
at low frequencies, where the beam assumption is valid, it has been
found that the role of fluid is reduced to the added mass effect,
see for example Sge-Knudsen and Sorokin (2010). The exception
is the acoustic duct mode in a fluid inside the pipe, which,
however, is not strongly affected by the curvedness of a pipe, see
Rostafinski (1974). For the wave propagation in a thin elastic
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circular cylindrical shell under internal or/and external loading
with a compressible fluid the main generally recognised result is
the existence of ‘fluid-originated’ and ‘structure-originated’ modes.
Modes of each of these two types are affected by the coupling in
different amounts depending upon their shapes and excitation fre-
quency, and this is rather well-known and understood.

In the real life pipe systems mentioned above, the evolution of
the curvature is more or less random throughout the pipe with
gradually changing magnitude and direction. Often this random
curvedness has been approximated by sections of constant curva-
ture. Thus, the wave guide properties, with and without FSI, of
curved elastic tubular beams with constant curvature where also
thoroughly studied by Padoussis (1998). Turning to the shell
theory, the curved pipe with constant curvature and circular cross
section can be represented by the elastic toroidal shell. In the
meantime, only very few publications on the wave guide proper-
ties of the toroidal shell, either with or without FSI, are found.
Though, what comes close is for example found in the papers by
Jiangong et al. (2013) and by Towfighi and Kundu (2003). These
are concerned with wave guide properties of so-called spherical
curved plates. Specifically for the toroidal shell, the references
Zhu (1992) and Zhu (1995) deals with free in-plane vibration of
bounded segments of such shells in interaction with fluids. On
the other hand the papers by Leung and Kwok (1994) and Ming
et al. (2002) are concerned with both in-plane and out-of-plane
vibrations of bounded segments, but in vacuum. In these two
papers the models are developed by means of analytical methods,
whereas Wang et al. (2007) and Tizzi (2015) solves similar prob-
lems by means of the finite element method. The paper by
Pontrelli and Tatone (2006) is in fact concerned with wave propa-
gation in fluid-filled toroidal shells. However, only the membrane
components of the shell are imposed and the fluid is regarded as
viscid and incompressible whereas the opposite assumption,
where the fluid is regarded as inviscid and compressible, usually
gives better results for acoustic related problems.

The ultimate goal should certainly be to assess the combined
influence of fluid loading and curvedness on wave propagation in
thin-walled pipes. However, this paper is concerned primarily with
the assessment of the influence of curvedness on dispersion dia-
grams for a thin toroidal shell. It turns out that the wave guide
properties of a toroidal shell without fluid loading may be accept-
ably described by simpler means (such as curved beam theory and
cylindrical shell theory) for a range of parameters. The hypothesis
is that FSI may be taken into account by similar simpler means,
either as for a curved beam with FSI or as for a cylindrical shell
with FSI, for the same ranges of parameters. To describe the wave
guide properties by simpler means it is beneficial to classify these
in accordance to their frequency-wise validity range. Typically
three frequency ranges are used, the low-frequency range (LFR),
the mid-frequency range (MFR), and the high-frequency range
(HFR). In this paper the frequency ranges are defined as follows:

e Low-frequency range: In the LFR simple deterministic methods
are valid. In the context of modelling flexible pipes, it means
beam and rod approximations. These approximations are able
to capture the most fundamental wave modes such as plane
waves, torsional waves, shear waves, and bending waves.
Mid-frequency range: The MFR involves more advanced methods
such as shell approximations. These methods may also be valid
in the LFR, but are able to capture high-order modes such as
ovalisation and so on.

High-frequency range: In the HFR the shortest wavelengths
become equal to or less than the thickness of the shell. Hence,
the shell approximations are no longer valid and 3d-elastic
continuum models must be employed.

In order to demonstrate the benefits of modelling the flexible
pipe as a toroidal shell, it will be compared with the above men-
tioned curved beam theory and cylindrical shell theory. On one
hand, this comparison demonstrates the applicability of the curved
beam approximation in the LFR, while it on the other hand reveals
some crucial limitations in the beam prediction in the MFR.
Contrary the comparison with the cylindrical shell theory shows
disagreement in the LFR, whereas in the MFR range the two models
turn out to merge, even if the torus is strongly curved. This insight
provides important information about in which situations the
waves are affected by the curvedness and in which they are not.

2. Methodology outline

To ensure both validity and reliability, two different models of
the toroidal shell will be formulated. One model is analytical while
the other one is numerical. The analytical model takes its origin in
classical thin shell theory. By specialising the general shell equa-
tions to the geometry of the torus, a set of governing differential
equations which may not have an exact solution are obtained. In
lack of an exact solution an approximate solution is suggested
and adapted to the problem by means of Galerkin’s method. By
truncating the approximate solution, Galerkin’s method provides
a finite eigenvalue problem where the characteristic equation
defines the so-called dispersion relation while the corresponding
eigenvectors represents the mode shapes. The numerical model,
on the other hand, takes advantage of the finite element method.
However it is not straightforward to model free waves in an
infinite wave guide in standard finite element packages. Instead
the so-called wave finite element (WFE) procedure described by
Mace et al. (2005) is utilised. This procedure initiates with the
mass and stiffness matrices generated from a finite element model
of a representative finite subsection of the wave guide. These
matrices could be generated by a commercial finite element pack-
age. Then, outside this finite element environment, an eigenvalue
problem is formulated on these two matrices, and the wave guide
properties of the infinite wave guide can be extracted.

The reliability of each model may be affected by, respectively,
the truncation of the analytical solution and the number of degrees
of freedom in the WFE model. Hence each model cannot stand
alone, but the analytical and the numerical model must back each
other up with respect to validation and reliability.

3. Problem formulation and model description

In order to isolate the impact of having a constant curvature on
a flexible pipe, the problem will be stated as simple as possible.
Thus the pipe will be highly idealised with the following
delimitations:

e Geometry: Throughout the length of the pipe the cross section
will be uniform and circular, the curvature of the pipe will be
kept constant, and the pipe wall will be single layered and thin.

e Material: The material will be considered homogeneous, isotro-
pic, linear elastic, and without damping.

e Loadings and displacements: The curved pipe has no pre-stress
and displacements are regarded as small making membrane
stiffening and other non-linearities neglectable.

3.1. The analytical approach

The thin shell theory applied in this paper is developed by
Gol'denweizer and presented in the text book by Novozhilov
(1959). Like many other shell theories, see Leissa (1973), this
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