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a b s t r a c t

This paper presents a new methodology to model failure phenomena in nonwoven materials with a
random network microstructure at finite deformations. The recently developed homogenization
technique for nonwoven materials (Raina and Linder, 2014) is combined with an enhanced deformation
gradient arising due to strong discontinuities within the bulk. This allows to capture the anisotropic and
nonlinear material bulk response with propagating cracks in the failing nonwoven at finite strains. The
homogenization technique averages the microscale one-dimensional linear response over an orientation
space to yield an accurate macroscale nonlinear behavior. Fiber reorientation and straightening phenom-
ena are incorporated in an orientation space to account for non-affine deformation in a phenomenological
manner. The failure in the form of cracks is incorporated locally as displacement jumps, so-called strong
discontinuities. The local nature of displacement jumps allows their static condensation from the global
governing equations, resulting in a compact and computationally efficient formulation. The computation
of an objective enhanced deformation gradient, at a material point where failure is detected, follows the
well-known incorporation of constant and linear separation modes directly into the finite element. The
orientation space is subjected to this enhanced deformation gradient to yield the corresponding
Kirchhoff stress tensor and elasticity modulus. Based on a micromechanically computed fracture
strength, the proposed methodology is verified in terms of quantitative comparisons of the simulation
results with experimental data from the literature.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nonwoven materials made from advanced synthetic fibers
are known for their high specific strength making them attractive
for demanding industrial applications. These materials possess
a random fiber network microstructure constituting of one-
dimensional elements, which is similar to materials such as
biological tissues with randomly connected filamentous-actin or
rubbery polymers with randomly connected polymer chains.
Recently, a model was introduced in Raina and Linder (2014) with
a predictive capability to simulate the anisotropic elastic behavior
of nonwovens at finite deformations. The scope of industrial appli-
cations of such materials is vast which ranges from military and
space equipments to nanofilters and reinforced concretes. For safer
design of equipments, a complete predictive knowledge of such
materials up to failure is required. The computational modeling

of fracture, being in itself a numerically difficult proposition,
becomes drastically complex when applied to soft matter materi-
als such as nonwovens undergoing finite deformations, which
presents the main goal of this paper.

The study of the mechanical behavior of nonwovens goes back
to Backer and Petterson (1960), where the first continuummaterial
model for nonwovens is proposed based on orthotropic theory of
elasticity. Recent experiments (Zhang et al., 1998; Kim et al.,
2000; Chocron et al., 2002; Hou, 2010; Ridruejo et al., 2010;
Ridruejo et al., 2015; Martínez-Hergueta et al., 2015) provide a
more complete understanding of their deformation mechanism
under different loading conditions. Cox (1952) presented the first
micromechanical modeling approach based on a fiber orientation
distribution. In the following decades, various improvements to
the material modeling capability were suggested (Bais-Singh
and Goswami, 1995; Narter et al., 1999; Kothari and Patel, 2001;
Liao and Adanur, 1997; Rawal, 2006). The experiments by
Jearanaisilawong (2008) and Chocron et al. (2008) on needle-
punched nonwovens made from Dyneema fibers and Ridruejo
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et al. (2010) on chemically bonded nonwoven felts made from
E-glass fibers provide extensive data about deformation and failure
behavior. The complex deformation mechanism, in the aforemen-
tioned experiments, is observed to be governed by fiber unfolding
and stretching, inter-fiber friction, volume compaction due to
change of volume fraction of fibers, reorientation of fibers, disen-
tanglements due to fiber slipping from junctions, or fiber breakage.
The main contribution of our approach presented in Raina and
Linder (2014) was to identify the microstructural changes respon-
sible for the non-linear stiffening in terms of the fiber undulations
and the reorientation phenomena within a continuum rather than
a lattice model setting (Onck et al., 2005; van Dillen et al., 2008).
Specifically, a two-dimensional network model was developed by
forgoing the standard volumetric-isochoric split of the deformation
gradient and statistically distributing the constituent fibers in a
non-uniform manner in the referential orientation space described
by a unit circle. As a result, fibers are asymptotically aligned with
the maximum loading direction in the reference geometry with
each monotonic loading step. The evolved referential unit vectors
are then mapped to the spatial geometry by the macro deformation
gradient to compute the macroscopic Kirchhoff stress and the asso-
ciated spatial elasticity modulus.

To model failure phenomena in nonwoven felts, the computa-
tionally efficient strong discontinuity approach (Simo et al., 1993;
Armero and Garikipati, 1996; Oliver, 1996; Armero, 1999; Oliver
et al., 2003; Linder and Armero, 2007; Armero and Linder, 2008)
extended to finite deformations is combined with the aforemen-
tioned advanced network model based homogenization procedure
in this work. A key characteristic of this approach is the enhance-
ment of the deformation within a finite element through local
degrees of freedom, which characterize the displacement jumps
of a strong discontinuity. This construction allows the static
condensation of the local degrees of freedom from the global
equilibrium equations, which makes the framework easy to
implement and apply for a large variety of fracture problems
(Steinmann, 1999; Callari and Armero, 2002; Linder and Armero,
2009; Armero and Linder, 2009; Linder et al., 2011; Linder and
Miehe, 2012; Armero and Kim, 2012; Linder and Raina, 2013;
Linder and Zhang, 2013; Linder and Zhang, 2014). The resulting
enhanced deformation gradient, which takes failure at a material
point into consideration, acts on the orientation space to compute
corresponding stresses and moduli. Nonetheless, no application of
the strong discontinuity approach to model failure in nonwovens
at finite deformations has been proposed so far.

The outline of the rest of the paper is as follows. Section 2
presents the summary of micro and macro kinetics at finite
strains with homogenized free energy response from the network
model. A brief overview of the strong discontinuity approach at
finite deformations in the continuum setting is presented. The
effect of fiber undulation and reorientation on the bulk response
of anisotropic nonwoven materials is briefly discussed. Section 3
introduces the finite element setting of the formulation where
the enhanced deformation gradient, accounting for failure in
the form of strong discontinuities, is linked to the homogenized
bulk response to compute the Kirchhoff stresses and associated
moduli, with some of the more technical results summarized in
Appendix A. Experiments of nonwoven felts made of dyneema
fibers (Jearanaisilawong, 2008; Chocron et al., 2008) and those
made from E-glass fibers (Ridruejo et al., 2010) are finally simu-
lated with the proposed framework in Section 4. A micromechan-
ical tensile test is performed to compute the fracture strength of
those nonwoven materials. A satisfactory quantitative compar-
ison of the numerical and experimental results confirms the
accuracy of the computed solutions and the generality of the
developed methodology for modeling failure in nonwoven
materials.

2. Continuum setting of failure in nonwovens through an
enhanced deformation gradient

This section summarizes the key areas of Raina and Linder
(2014) to introduce the concept of network model based homoge-
nization developed for nonwovens with fiber reorientation and
undulations. To introduce failure in the form of strong discontinu-
ities in nonwovens, an enhanced deformation gradient following
the developments in Armero and Linder (2008) is computed and,
for the first time, linked to the homogenization procedure of
Raina and Linder (2014) in this work. A step-by-step process
towards a new methodology of enhanced deformation gradient
driven failure in network model will be presented.

2.1. Micro–macro kinematics at finite strains

A body B � Rndim undergoing finite strains with the motion
x ¼ vðX; tÞ : B� T ! S � Rndim at time t 2 Rþ is considered. Here
vðX; tÞ �Rndim is a non-linear deformation map and F¼rXvðX;tÞ2
GLðndimÞ is a deformation gradient with material points in
referential and spatial configurations denoted by X2B and x2S,
respectively. Let GðXÞ2B and gðxÞ2S denote the covariant metric
tensors mapping on the reference configuration and the spatial
configuration at X and x, respectively. The right Cauchy Green
strain tensor C is subsequently given by the pull back of the
spatial metric as C ¼ FTgF. For the anisotropic material under con-
sideration, let W ¼ WðCÞ ¼ Wðg;FÞ be the strain energy density per
unit reference volume where the objectivity of right Cauchy Green
tensor guarantees its material frame-indifference. The theory of
network models (Arruda and Boyce, 1993; Wu and van der
Giessen, 1993; Miehe et al., 2004; Linder et al., 2011; Tkachuk
and Linder, 2012) assumes a microscopic orientation space
O0 � Rndim at each material point X 2 B. For two-dimensional prob-
lems of interest (ndim ¼ 2), an orientation space O0 in the reference
configuration can be represented by a unit-circle. A Lagrangian unit
vector r ¼ r̂ðh0Þ ¼ cosh0e1 þ sinh0e2 2 O0 � R2 is assumed to lie in
the referential orientation space O0. This vector represents a fiber
direction and is parameterized by h0 2 Rh 2 ½0;pÞ when accounting
for the symmetry across the e1-axis. A schematic illustration of the
orientation space O0 � R2 with uniformly distributed unit
vectors r 2 O0 is shown in Fig. 1. The continuous deformation
gradient F maps the referential orientation space O0�R2 to the
spatial orientation space Ot � R2 with F :r ! t ¼ Fr 2 Ot where
tj jg ¼

ffiffiffiffiffiffiffiffiffiffi
gt �tp ¼ �k. Here, �k is the macro-stretch defined by the ratio

of lengths of tangents to the material line elements in spatial and
referential configuration. The micro-stretch k of a single fiber is
introduced based on the affine stretch assumption (Treloar and
Riding, 1979) by the relation k¼�k. Failure in the form of
jumps in the deformation does not appear so far such that the
deformation gradient F appearing above is continuous. The key
aspect of this work is to introduce an enhanced deformation
gradient Fl, later in Section 2.3, based on the strong discontinuity
approach which accounts for the jumps in the deformation and
drives the orientation space O0.

2.2. Free energy and static equilibrium equation

Following Raina and Linder (2014), the micro–macro kinemat-
ics introduced in Section 2.1 are used next to define macro- and
microscopic free energies. According to experimental investiga-
tions (Jearanaisilawong, 2008; Chocron et al., 2008; Ridruejo
et al., 2010), the constituent fibers of nonwovens are linear elastic
until failure. This motivates to introduce the microscopic free

energy in the form of a linear spring as wðkÞ ¼ EA‘ðk� 1Þ2=2, where
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