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a b s t r a c t

The present study is aimed at understanding the effect of a vertically aligned crack, present in the elastic
half space on the propagation of attenuated waves. These waves are incident at a point on the interface
between the porous half space and the cracked elastic half space. The analysis is based on Snell’s law for
reflection and refraction of an incident wave at the interface. A loose bonding at the interface between the
porous half space and the cracked elastic half space has been considered and represented here as the
tangential slip. The proposed model is solved for the propagation of harmonic plane waves. The final
equations are in the form of Christoffel equations from which we find four reflected waves (three
longitudinal body waves and one transverse body wave) and two refracted waves (one longitudinal body
wave and one transverse body wave). The expression of reflection–refraction coefficients and energy
share of each reflected and refracted waves for a given incident wave is obtained in closed form and
computed numerically in the present study. Numerical examples are considered for the partition of
the incident energy in which we have studied the effect of aspect ratio, crack density and loose bonding
parameter.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Poroelasticity theory is an important theory for the study of the
mechanical behavior of porous solids in different fields, some of
which are soil dynamics, oil exploration, earthquake engineering,
geomechanics and reservoir engineering. The study of wave prop-
agation in a porous solid saturated with a single fluid was started
by Biot who has published some important research work related
to wave propagation in porous media, Biot (1956a,b, 1962a,b)
and Biot and Willis (1957). From his studies Biot has found two
longitudinal body waves and one transverse body wave.

Biot’s theory has been extended as mixture theory in which the
porous medium is saturated by more than one fluid. Brutsaert
(1964) first found the presence of a third longitudinal body wave
in an unsaturated granular medium. Based on this study, Bedford
and Drumheller (1983) have developed theories of immiscible
and structured mixtures. Garg and Nayfeh (1986) have discussed
the third compressional wave in their study. For low frequency
elastic waves, Tuncay and Corapcioglu (1997) have successfully

studied the presence of three longitudinal body waves and one
transverse body wave in a porous solid saturated with two immis-
cible fluids for which they had used a volume averaging technique.
They found that the first two longitudinal body waves are the same
as Biot (1956b) while the third longitudinal body wave is due to
the presence of the third fluid. Using this theory, many develop-
ments have been carried out by researchers; e.g. Yew and Jogi
(1976), Tomar and Arora (2006) and Sharma and Saini (2012).

Deresiewicz (1962) has studied the effect of the boundaries of
the liquid filled porous solid on the propagation of a wave that
changes the wave pattern of the elastic wave. Deresiewicz and
Skalak (1963) have successfully applied Neumann’s uniqueness
theorem of elasticity to a porous medium for defining the bound-
ary conditions. Based on the previous study, Sharma (2009) has
given different cases for the boundary conditions for the porous
solid. A study of the reflection and transmission from the interface
between two media have been carried out by some researchers e.g.
Ainslie and Burns (1995), Borcherdt (1982), Berryman (2007),
Denneman et al. (2002), Sharma and Gogna (1991), Sharma
(2008a) and Vashisth et al. (1991).

The earth’s crust normally has a lot of aligned cracks or
micro-cracks which contain fluids or sometimes voids. O’Connell
and Budiansky (1974) calculated the effect of cracks on the elastic
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properties of an isotropic solid. Most of the cracks are developed
due to small earthquakes that have been described in Crampin
(1978, 1985, 1987) who found some important aspects related to
wave propagation through these cracks. These small earthquakes
may result due to the accumulation of stresses in the particular
region. The study of cracks inside the earth’s crust can give
important information related to the oils/water/minerals depos-
ited in these cracks. Fluid flow from a porous medium to the
cracked elastic medium can be controlled by some boundary
conditions at the interface, those may be fully opened or closed
or partially open-closed, as given in Sharma and Gogna (1991),
Sharma (1999, 2008a, 2009) and Vashisth et al. (1991). The pres-
ence of the attenuation plays an important role in wave propaga-
tion through aligned cracks and this phenomena has been shown
in Chatterjee et al. (1980) and Xu and King (1990). Currently,
Nandan and Saini (2012) have studied the effect of an aligned crack
on the reflection and transmission of elastic waves through the
interface between the poroelastic solid with one fluid and cracked
elastic solid.

For the study of wave propagation, we summarize the previous
work in Table 1 based on appropriate criteria. In the present study,
we consider an isotropic homogeneous poroelastic medium
saturated with a mixture of two immiscible fluids lying over the
cracked elastic half space. We assume that the two media are
loosely connected to each other and the connected coefficient or
bonding parameter is represented here by w. The interface between
these two media is assumed at x3 ¼ 0. We solve the dynamical
equation with the help of the assumed harmonic solution. The
obtained results are in the form of Christoffel equations and these
results provide four inhomogeneous waves in a porous medium, of
which three are longitudinal body waves and one is a transverse
body wave. The reflection coefficients and energy share have been
solved for given boundary conditions at a loosely bonded interface.
The energy matrix defines the distribution of the incident energy to
the four reflected waves, two refracted waves and some energy is
spent at the interface and is defined as dissipation energy. The final
results related to energy share satisfy the conservation law of
energy. We graphically demonstrate the results of energy share
with respect to the incident angle h for the effect of aspect ratio
c=a (where c is the crack thickness and a is the radius of circular
crack), crack density g and bonding parameter w. We have also
conducted a comparative study between the presence and absence
of vertical aligned cracks with respect to the crack density and the

crack thickness in the elastic half space. For the numerical valida-
tion of the present study, we assume that the first medium is water
and CO2 saturated sandstone and second medium is basaltic rock.

2. Basic theoretical framework

2.1. Poroelastic solid with two immiscible fluids

The balance equation in the absence of body forces for the low
frequency vibration in a tri phase solid–air–water mixture can be
expressed as Tuncay and Corapcioglu (1997),
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where the subscripts s; g; l define solid, gas and liquid phases,
respectively. For phase kð¼ s; g; lÞ; hski’s and hqki’s signify the aver-
age stresses and average partial density over the solid–gas–liquid
aggregate. ui;v i and wi represent the displacement components of
solid, gas and liquid particles. Here, the coefficients dg and dl define
the presence of dissipation related to gas and liquid particles in the
porous medium (according to Darcy’s law) and these coefficients
can be defined here as:

dk ¼ lka2
k

##k
; ðk ¼ g; lÞ ð2Þ

where the symbol’s lk; #k, and ak represent the viscosity, relative
permeability and volume fractions for each fluid and # represents
the intrinsic permeability of the porous medium. The stresses in
the porous solid and the fluid pressures in the pores can be given as:

hssiij ¼ a11uk;k þ a12vk;k þ a13wk;k

� �
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where dij is the Kronecker symbol. a10 and aijði; j ¼ x; y; zÞ are said to
be elasticity constants with property aij ¼ aji, and can be written as:
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3
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where Kcap is called the macroscopic capillary pressure, Garg
and Nayfeh (1986). Kfr ;Kg and Kl are said to be the bulk
modulus of the porous frame, gas phase and liquid phase, respec-
tively. Gfr denotes the shear modulus for the porous solid.
Si ¼ ai= 1� asð Þ i ¼ g; lð Þ with Sg þ Sl ¼ 1 are the gas saturation and
liquid saturation for the porous solid.

In terms of the displacement components, the equations of
motion are expressed using Eq. (3) in Eq. (1):
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For solving Eq. (4) harmonically, we assume the displacements
component as

Table 1
Classification of related references by type of systems and chronological order.

Solid Porous media
� Biot and Willis (1957)
� Achenbach (1973)
� O’Connell and Budiansky (1974)
� Crampin (1978, 1985, 1987)
� Xu and King (1990)
� Ainslie and Burns (1995)
� Sharma (1999)

� Biot (1956a,b, 1962b,a)
� Vashisth et al. (1991)
� Tuncay and Corapcioglu (1997)
� Denneman et al. (2002)
� Tomar and Arora (2006)
� Nandan and Saini (2012)
� Sharma and Saini (2012)

Ideal fluids Viscous fluids
� Sharma (2008a)
� Nandan and Saini (2012)

� Chatterjee et al. (1980)
� Tomar and Arora (2006)
� Sharma and Saini (2012)

Perfect interface Imperfect interface
� Ainslie and Burns (1995)
� Denneman et al. (2002)
� Tomar and Arora (2006)
� Sharma and Saini (2012)

� Vashisth et al. (1991)
� Nandan and Saini (2012)

Isotropic Anisotropic
� Tuncay and Corapcioglu (1997)
� Tomar and Arora (2006)
� Nandan and Saini (2012)
� Sharma and Saini (2012)

� Biot and Willis (1957)
� Sharma and Gogna (1991)
� Vashisth et al. (1991)
� Sharma (2008b)
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