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a b s t r a c t

This paper is focused on the analysis of the sensitivity of the thermomechanical response of a macroscopic
elastic body to changes that occur at the microstructure. This problem is a key issue in material design.

The sensitivity analysis relies on an accurate determination of the effective properties of the heteroge-
neous material. These effective properties are determined by computational homogenization. And their
sensitivities, with respect to the parameters defining the microstructure, are then computed.

For an efficient evaluation of the thermomechanical response, we propose to build response surfaces for
the effective material properties. The surfaces are generated in an offline stage, by solving a series of homog-
enization problems at the microscale. In such a way, the fully online multiscale response analysis reduces to
a standard problem at the macroscale. Thus, an important reduction in computational time is achieved,
which is a crucial advantage for material design.

The capability of the proposed methodology is shown in light of its application to the design of a
thermally-loaded structure with variable microstructure. Considerable improvements in the structural
response are achieved.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As stated by Torquato (2010), the deep knowledge of the sensi-
tivity of the observable macroscopic response of a body to changes
in the structure of its constituent material at one or more subscales
is the holy grail of materials science. Traditionally, the engineers
used to choose from a catalog the best material to build a structure
or mechanism with a desired response. In recent years, thanks to
the ever-growing power of computers and the maturity of
Computational Multiscale Modeling (CMM), an alternative
approach is emerging, specially for high-performance applications:
the Materials by Design (MbD) approach (McDowell and Story,
1998). MbD consists in designing the structure of a material at a
subscale in order to make this material (or the body made of this
material) the best-suited for a specific application.

In general, the term subscale refers to a wide range of length
scales, from atomistic or molecular to microscopic and mesoscopic,
whenever the length scale be much smaller than the dimensions of
the structure made of the considered material. This paper is

focused on the design of heterogeneous materials, typically com-
posites, by altering their structure at one (and only one) subscale
where the material can still be assumed to be a continuum. For
the sake of convenience, let us refer to the material at such scale
as ‘‘microstructure’’.

Further, we are currently interested in ‘‘quantitatively charac-
terized’’ materials (Kachanov and Sevostianov, 2005), those whose
macroscopic or effective physical properties can be expressed as
functions of identified microstructural parameters: e.g., fiber ori-
entation in fiber-reinforced polymers (Lund and Stegmann,
2005), density and irregularity factors in materials with isolated
inhomogeneities (Kachanov and Sevostianov, 2005; Tsukrov and
Kachanov, 2000), size of particles or beads in coating of dental
implants (Rungsiyakull et al., 2010; Chen et al., 2013).

From the computational point of view, MbD can be formulated
as a structural optimization problem where the cost function is
defined at the macrostructure level. The goal is to obtain the distri-
bution of microstructures along the macrostructure domain pro-
viding the minimum cost. This approach has been addressed by
Rodrigues et al. (2002) and Bendsøe and Sigmund (2003). The
so-determined material can be seen as a functionally graded mate-
rial (FGM) in the sense that the microstructure changes smoothly
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from point to point at the macroscale. Paulino et al. (2009) have
studied the microstructural optimization problem for a FGM.

Based on this MbD paradigm, the key point for developing an
admissible computational procedure relies on the concept of hier-
archical optimization (Rodrigues et al., 2002): the microstructural
design problem (the inner problem) is uncoupled from the problem
of finding the minimum cost function at the macroscale (the outer
problem). Then, the sensitivity analysis addressed in this work
plays an extremely important role during the process of obtaining
the minimum cost function of the outer problem.

In our case, the inner problem consists on determining the way
the effective properties of quantitatively characterized materials
depend on microstructural parameters. In order to solve this prob-
lem, recourse can be made to experiments (the most expensive
option), homogenization techniques for specific materials having
simple microstructural topologies like analytical solutions
(Kachanov and Sevostianov, 2005; Tsukrov and Kachanov, 2000),
the effective field methods of the Mori–Tanaka type and variational
estimates of the Hashin–Shtrikman type, or numerical methods like
computational homogenization (CH) (Rungsiyakull et al., 2010;
Chen et al., 2013). CH, the most general approach, is preferred in this
work.

Then, we proceed to solve the inner problem applying CH over a
parameterized Representative Volume Element (RVE). In this way,
we build a grid of points (microparameters vs. homogenized property)
for each one of the independent tensorial components of the physi-
cal properties involved in a steady-state thermomechanical prob-
lem: the fourth-order elasticity tensor, the second-order thermal
expansion tensor, and the second-order thermal conductivity
tensor.

After that, recourse is made to the response surface methodol-
ogy (RSM) in order to fit the grid points for each effective property
by a polynomial function of the microparameters. Then, the sensi-
tivity of such property to microstructural changes (i.e., its deriva-
tive with respect to the microparameters) is also a polynomial.
Let us remark that, using RSM, we do not need either to interpolate
a property when the microparameters do not coincide with grid
points or to use numerical differentiation. Kamiński (2009) has
presented a similar approach to evaluate the sensitivity gradients
of the computationally-homogenized properties of random com-
posites. He has considered as microparameter the randomness of
the mechanical properties of the microcomponents, and has con-
structed a response function for each of them.

Regarding the computational cost, let us remind that the seek of
the optimal macroscopic response of a structure uses to be a long
iterative process. At each iteration, a multiscale problem has to be
solved: given the distribution of the microstructure throughout the
structure, we obtain the macroscopic distribution of the homoge-
nized properties (solving the inner problem at each sampling
point), and then we solve a standard structural problem (the outer
problem) to obtain the corresponding macroscopic response. In
this work, since the inner problem is solved in an offline way,
the outer problem becomes the only online stage, making each
iteration as expensive as the solution of a standard problem at
the macroscopic scale, i.e., considerably cheaper than the solution
of a multiscale problem. This is a major contribution of this paper
to the MbD approach.

Further, by accounting for the thermal coupling, this work con-
stitutes a step further in sensitivity analysis of purely mechanical
multiscale problems (Fish and Ghouali, 2001; Kamiński, 2014).

Finally, as an example of application, the current technique of
sensitivity analysis is applied to determine the effect of
microstructural changes on the compliance of a thermally loaded
structure made of a bi-material. As result, a considerable improve-
ment of the compliance or the stiffness of the structure can be
achieved.

2. The two-scale thermomechanical problem

Let us consider a body X � Rdim, Fig. 1, undergoing a steady
state thermomechanical loading process: the heat flux qwall and

the temperature Twall are prescribed on the boundaries @Xq and
@XT , respectively, while the traction twall and the displacement
uwall are prescribed on the boundaries @Xr and @Xu, respectively.
Considering these boundary conditions, the sets of admissible tem-
perature and displacement fields are

T ¼ fTðXÞ jT 2 H1ðXÞ and T ¼ Twall on @XTg; ð1Þ

U ¼ fuðXÞ ju 2 H1ðXÞ and u ¼ uwall on @Xug; ð2Þ

whereH1ðXÞ is the space of functions having square-integrable first
derivatives. The spaces of admissible temperature and displacement
variations are

T̂ ¼ fT̂ðXÞ jT̂ 2 H1ðXÞ; and T̂ ¼ 0 on @XTg; ð3Þ

Û ¼ fûðXÞ jûi 2 H1ðXÞ; and û ¼ 0 on @Xug: ð4Þ

Then, the current macroscopic thermomechanical problem can
be stated in the standard variational format as follows: find
T 2 T and u 2 U satisfyingZ

X
qðTÞ � rX

bT dV �
Z
@Xq

qwallbT dS ¼ 0; 8bT 2 T̂ ; ð5Þ

Z
X
rðu; TÞ � rs

Xû dV �
Z
@Xr

twall � û dS ¼ 0; 8û 2 Û; ð6Þ

where q is the macroscopic heat flux vector and r is the macro-
scopic Cauchy stress tensor. Eq. (5) represents the steady-state heat
balance equation in absence of internal heat source, while (6) is the
momentum balance equation in absence of body forces and inertial
terms.

The problem is completed by the constitutive laws for q and r
at any point X 2 X, which are determined in this work from the
analysis of the microstructure at this point.

Let the body have a heterogeneous microstructure that, at any
point X 2 X, is described by a Representative Volume Element
(RVE), denoted Xl, shown in Fig. 1. Points in Xl are denoted y.
From now on, any quantity ð�Þ described in the domain Xl will
be denoted as ð�Þl.

As stated in Appendix A, the macroscopic terms q and r at
X 2 X are defined by the homogenization formulas

q ¼ 1
jXlj

Z
Xl

qldVl; ð7Þ

r ¼ 1
jXlj

Z
Xl

rldVl; ð8Þ

where jXlj is the volume of Xl.
The constitutive response of the material components at the

microscopic level is assumed to be known. Further, for the purpose
of this work, the behavior of these microcomponents is assumed to
be linear. In such a case, ql and rl are respectively defined by the
Fourier’s and Hooke’s laws:

ql ¼ �klryTl; ð9Þ

rl ¼ Clrs
yul þ dl Tl � T0

� �
; ð10Þ

where kl is the thermal conductivity tensor, Cl is the elasticity ten-
sor, dl is the stress increment per unit temperature, all of them are
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