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Analytical understanding of how stress concentrates is invaluable. An equation that generates stress con-
centration formulas is derived and shown to apply very well to a number of shallow irregularities on sur-
faces, for the plane stress conditions and to a first-order approximation. Under shallow conditions, for any
first-order Hélder-continuous surface function f(x), the derived equation is: k.(x) = 1 — 2.#[f'(x)], where
o is the Hilbert transform and f’(x) is the spatial derivative of f with respect to the independent variable.
It is shown that using this generating equation, well-known traditional results can be easily derived. Also,
a number of other stress concentration formulas for various cases are generated. Furthermore, a
second-order approximation is introduced, which shows the dependence of k; on not only the slope
but also on the concavity of the surface. The approach used herein can be extended to finding
closed-form solutions to other integral equations possessing similar kernels for applications such as
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the variation of the stress intensity factor due to an arbitrary crack front profile (work in progress).
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1. Introduction

Analytical understanding of how stress concentrates on sur-
faces possessing an arbitrary topography is of crucial importance
in many applications. For various reasons, it is highly desirable to
know if and how a material’s parcel would become the "weakest
link” during the material’s service lifetime. Additionally, analytical
solutions of how the stress concentrates provide a more effective
route to approach certain multi-physics problems by coupling
those solutions with, for example, the Navier-Stokes, Fick’s Law
of diffusion, and free-energy Gibbs equations, just to name a few.
Furthermore, stress-driven-reaction analyses provide insight about
the stability of surfaces, but it is evident that one limitation is the
unavailability of stress-concentration solutions for general
configurations of surfaces. Much of the advancement on the fore-
going topics has relied on the use of surface-stress-concentration
distributions for the cases of sinusoidal surfaces (Gao, 1991a;
Liang and Suo, 2001), cycloid rough surfaces (Chiu and Gao,
1993; Li et al,, 1993), and some single-notch cases (Yu, 2005). In
this document, a novel, 2-dimensional, general equation that
generates stress concentration formulas for a wide variety of
shallow-surface configurations is presented. Additional impetus
for this work follows.

E-mail address: hedmedina@yahoo.com

http://dx.doi.org/10.1016/j.ijsolstr.2015.06.006
0020-7683/© 2015 Elsevier Ltd. All rights reserved.

It has been established that surfaces are not inert to their sur-
roundings, and that the latter interplay with the elastic and plastic
flows of material at the boundaries. At such inequilibrium condi-
tions, surfaces undergo transformations which, in turn, could be
catastrophic for films, interfaces, coatings, etc. For example, elec-
tronic and micro-electromechanical devices can be significantly
impacted by the foregoing conditions, mostly due to the presence
of large internal stresses introduced during the manufacturing pro-
cesses. It has been reported that stresses in the 1-GPa order of mag-
nitude can be present in the thin films that comprise integrated
circuits and magnetic disks (Nix, 1989). A slight magnification of
such high stress levels, due to surface deformation, would definitely
increase the likelihood of failure. It has been found (Medina and
Hinderliter, 2014) that even slightly random rough surfaces (with
heights normally distributed) can most likely magnify the bulk
stress by a factor of 1.6. For the case of slightly undulating surfaces,
this magnifying factor can range from 2 to 3' (Gao, 1991b). An ana-
lytical description of the distribution ofconcentrated stress for an
arbitrary surface would provide safety envelopes for surface topogra-
phies found experimentally. Furthermore, stress-driven surface evo-
lution has been recognized to be an important process in the behavior
of heteroepitaxial films (Gao, 1994). For specific surface morpholo-
gies, advancement on stress-driven reactions has been accomplished

1 Although it is shown in this document, in Section 4, via a second-order
approximation that these numbers are a few percents lower.
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by coupling analytical solutions of surface stress distribution to the
total energy equation.

Ever since the development of the first analytical solution for
the stress concentration due to an elliptical hole in a plate provided
by Inglis (Inglis, 1913), an immense number of solutions have been
developed (Pearson, 1997; Medina et al., 2014; Neuber, 1958).
Additionally, some attempts have been carried out to consolidate
stress concentration formulas and factors, mostly via empirical
methods (Pearson, 1997; Medina et al., 2014; Neuber, 1958;
Noda and Takase, 1999). Although the foregoing referenced work
is commendable, it is mostly focused on stress-concentration fac-
tors and not on the stress distribution along the surfaces of the
geometries analyzed. In the present work, a stress-concentra
tion-formula-generating equation is derived and shown to be
applicable to a wide number of shallow surfaces under tension or
pure bending, at least. Under shallow? conditions, for any function®,
f(x) descriptive of a 2-dimensional surface, the stress concentration
along the profile is given by:

ke(x) =1 -2(f (x)) (1)

where # stands for the general Hilbert transform, and prime repre-
sents the first derivative with respect to the given independent vari-
able. It will be shown that using this generating equation,
well-known traditional results can be easily obtained.

This paper is organized in the following manner. First, the main
result, a stress-concentration-formula-generating equation
(SCFGE) is derived in a fashion similar to that used by the author
in a previous work (Medina and Hinderliter, 2014; Medina and
Hinderliter, 2012). Next, the robustness of the SCFGE is shown
via derivation of previously developed and accepted results such
as semi-elliptical (and semi-circular) single notch, parabolic single
notch, sinusoidal surfaces, etc. Following, the stress concentration
is found for other interesting profiles, and a table containing results
is provided. Next, a second-order approximation is introduced and
applied to the undulating surface case. Finally, this document is
completed with a discussion and conclusion section.

2. Derivation

For the first part of our derivation, we employ a first-order per-
turbation method. A similar approach was previously used by
Banichuck (1970) and Goldstein and Salganik (1970, 1974), later
by Cotterell and Rice (1980), and Rice (1985). In the foregoing ref-
erences, the perturbation approach was applied to the problem of
the stress intensity variation due to a crack front that deviates from
flatness due to local irregularities in materials (e.g. grain bound-
aries). Later, this method has been used by Gao (1991b) and later
by the author (Medina and Hinderliter, 2014) to develop, respec-
tively, stress concentration factor formulas for undulating surfaces
and random rough surfaces. Other related problems, such as the
study of the elastic fields at the interfaces between dissimilar
materials (Gao, 1991a; Grekov, 2011), have been studied using
the perturbation method, as well.

Consider the profile from Fig. 1, which is a slight perturbation
from an originally flat surface. Profile f(x) is a continuous real func-
tion that satisfies the Holder condition® within its domain. Fig. 2

2 Shallow means that the heights or depths of hillocks or hollows on the surface are
small in comparison to their widths. For example, in the case of a sinusoidal surface,
the amplitude is much smaller than the wavelength; or in the case of a single notch,
the depth of the notch is much smaller than its width.

3 Actually, as it will be shown, the requirements to be imposed on f do not limit it
from any practical applications.

4 This is a very important characteristic of our solution, and it is completely related
to a property of the Hilbert transform to be discussed later. Most functions found in
practical applications meet this criterion. Moreover, for the particular case of surfaces
without cracks, this criterion is obviously always met.

shows some typical topographies described by f. Being f a perturba-
tion from a previously flat configuration, an important constraint on
fis that it must be of small magnitude. Assume that our surface f(x)
is being subjected to a remote tensional load ¢ far enough from the
surface features that Saint-Venant’s principle applies (Saint-Venant,
1855). This model can be applied, as well, to a thick rectangular
beam with a slight rough surface subjected to pure bending®, since
a sufficient number of layers of fibers on and near one of surfaces
can be assumed to be subjected to a tensional load. Following
(Medina and Hinderliter, 2014), we can define the stress and dis-
placements for the rough surface (T and u;) in terms of the reference
state values (Tfj and u}) and the perturbed elements (6T and du;), as:

Tij = Tlr] + 5T,‘j
U = uj + ou;

@)

Consider a concentrated point force F, (see Fig. 1) acting at an
arbitrary location (x,y). The purpose of using a point force is only
to utilize the well-known solution for the surface stress Green’s
function, and the magnitude of F, can be shown to be irrelevant.
Using a similar reasoning as used by others previously
(Banichuck, 1970; Goldstein and Salganik, 1970; Goldstein and
Salganik, 1974; Rice, 1985) and developed in both (Gao, 1991b
and Medina and Hinderliter, 2014), it is shown that perturbation
contributions for the stress and displacements are given as:

5Tu(xy Gf G,]af )()dx

which is for the particular case when there is no concentrated force
and thus the material is only exposed to the bulk stress; that is,

T =T, =o0.
XX XX
In Eq. (3) E' is the consolidated Young modulus of elasticity®;
And 6,-,~ is a tensor representing a kernel function which can be
derived from the Green’s function, G, in the following manner:

~ 1| (8G, 9GL\ = 2uve; 9Gy
Gy F |:M<8—Xj+ ox; +

1—2v 0xy
where, in this case, ; is the Kronecker delta, and u is the shear
modulus.

The Green'’s function G, can be obtained by differentiating the
strain energy density with respect to the point force F, (for details
see (Medina and Hinderliter, 2014)) and found to be:

OTx

Cul1:X.Y) = oF, )

3)

(4)

where the stress Green'’s function in Eq. (5) is understood as the sur-
face stress at y due to a unit point force F, in the i-direction applied
at the point source (x,y). Therefore, the Green'’s function above, Eq.
(5), can be used to find the kernel of Eq. (4), which in turned can be
used to find the contribution of the stress due to the perturbation.
Finally, this perturbation part of stress can be used to find the stress
increased from the bulk stress, according to part (a) of Eq. (2).
Extracting the other Green’s functions Gi] from the point force

solutions for a half-plane from (Green and Zerna, 1968), it can be
shown that Eq. (2)(a) can be expressed as:

Talxy) =0 [ ﬁéf(x)dx (6)

5 Either a four-point bending or a three-point bending with negligible shear.

6 {E, for plane stress
E = E
T2

for plane strain,(v = Poisson/s ratio)
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