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a b s t r a c t

The paper presents a detailed analysis and extended formulation of a rate-independent regularized
damage model proposed by Mielke and Roubíček (2006). Localization properties are studied in the
context of a simple one-dimensional problem, but the results reveal the fundamental features of the
basic model and of its modified versions. The initial bifurcation from a uniform solution is described
analytically while the complete failure process is studied numerically. Modifications of the regularizing
term and of the dissipation distance are introduced and their effect on the global response is investigated.
It is shown that, with a proper combination of model parameters, a realistic shape of the load–displace-
ment diagram can be achieved and pathological effects such as extremely brittle response or expansion of
the damage zone accompanied by stress locking can be eliminated.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering mechanics, damage is understood as a
load-induced evolution of microstructural defects, resulting in a
reduced macroscopic material integrity. Phenomenological consti-
tutive models of damage characterize such irreversible phenomena
by an internal damage variable (Kachanov, 1958), which is closely
related to the reduction of the secant modulus of elasticity. Since
the seminal contribution of Bažant (1976), it has been
well-understood that such a description within the framework of
local (i.e. scale-free) continuum mechanics leads to an ill-posed
problem, resulting in localization of damage growth into an arbi-
trarily small region. As a remedy to this pathology, a plethora of
non-local rate-independent continuum theories, based on integral,
explicit and implicit gradient approaches, have been proposed to
introduce an internal length scale into the description, see e.g.
Bažant and Jirásek (2002) for a representative overview. Despite
a significant increase in objectivity offered by the enhanced contin-
uum theories, the non-local damage formulations often suffer from
the fact that the non-local variables are introduced into the model
in an ad hoc fashion, thus violating basic constraints of thermody-
namics. In addition, since the principle of local action is no longer
valid, such inconsistencies are rather difficult to detect, especially
in the multi-dimensional setting, e.g. Simone et al. (2004).

Fortunately, as demonstrated by Jirásek (1998) and confirmed by
a number of independent studies, e.g. (Peerlings et al., 2001;
Jirásek and Rolshoven, 2003, 2009a,b; Di Luzio and Bažant, 2005;
Engelen et al., 2006), a simple one-dimensional study of the local-
ization behavior can serve as a convenient ‘‘filter’’ test, allowing to
pinpoint various inconsistencies in the formulation of a constitu-
tive model. The same point of view has recently been adopted by
Pham et al. (2011) and Pham and Marigo (2013), who investigated
various aspects of the response a wide class of energy-based gradi-
ent damage models under displacement-controlled uniaxial ten-
sion. These works build on a variational framework for local and
gradient-based models developed by Pham and Marigo (2010a,b),
in which evolution follows from physically sound principles of sta-
bility, energy balance, and irreversibility, expressed using a single
energy functional. In particular, Pham et al. (2011) concentrates
on the stability of homogeneous solutions, while in the follow-up
work (Pham and Marigo, 2013) the authors study in detail the
behavior inside the damaged zone and its implications for the
structural response. In both cases, the material constitutive law
is incorporated in the model indirectly by means of parametrized
energy families with parameters adjusted to reproduce the local
stress–strain response of the material under investigation. The
purpose of our paper is to complement these developments with
detailed localization studies for gradient damage models based
on the commonly used local stress–strain diagrams. To this pur-
pose, we start from the discussion of an elementary elastic–brittle
model regularized by the gradient of damage in the spirit of
Frémond and Nedjar (1996); see Section 2. Our description builds
on a general framework established by Mielke and co-workers,
see e.g. Mielke (2005) for an overview, developed to study the
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evolution of general irreversible rate-independent systems, which
has been applied to rigorous analysis of gradient damage models
and their numerical approximation (Mielke and Roubíček, 2006;
Bouchitté et al., 2009; Mielke et al., 2010; Thomas and Mielke,
2010; Mielke, 2011a). The variational formulation presented in
Section 2 is thus based on a stored energy functional, quantifying
the reversibly stored energy, and a dissipation distance accounting
for the irreversible changes. The stored energy is further decom-
posed into a standard (elastic) part and a regularizing part which
introduces a characteristic length into the formulation.

Section 3 presents a study of the localization behavior of the
model, utilizing arguments of local incremental energy minimiza-
tion. Following our recent developments (Jirásek et al., 2013), in
Section 3.1 we show that the damage profiles during the damage
evolution must be continuously differentiable in space, thereby
justifying the assumption made by Pham and Marigo (2013,
Remark 2), and derive the continuity conditions at the interface
between elastic and damaging regions, as well the governing
equations to be satisfied in the region experiencing damage.
These conditions are employed in Section 3.2 to characterize the
elastic response, in Section 3.3 to obtain an analytical solution to
the damage profile at the onset of damage, and in Section 3.4 to
study the response at later stages by means of a numerical
procedure described in Appendix A. It turns out that the model is
regularized in the sense that the energy dissipation is finite, but
the global response is extremely brittle, especially at late stages
of the failure process. This motivates the search for modifications
which could lead to load–displacement diagrams that better
correspond to the actual behavior of quasibrittle materials.

In Section 4, the elastic–brittle core of the model is replaced by
linear or exponential softening via modifications of the dissipation
distance. In Section 5, an elastic–brittle model with the regulariz-
ing part of the stored energy dependent on the gradient of a
modified internal variable is developed and its alternative inter-
pretation in terms of a variable characteristic length is suggested.
Finally, Section 6 combines the linear or exponential softening
with variable characteristic length.

2. Variational formulation of elastic–brittle model

We consider a prismatic bar of initial length L, subjected to
displacement-controlled uniaxial tensile loading. In the sequel,
the bar will be represented by the interval X ¼ ð�L=2; L=2Þ, with
boundary C ¼ f�L=2; L=2g (consisting of two points) subjected to
the Dirichlet loading uDðtÞ : C! R, where t 2 ½0; T� denotes the
(pseudo-) time; see Fig. 1. For the sake of simplicity, we denote
by e the bar elongation (change of length), i.e., we set
eðtÞ ¼ uDðt; L=2Þ � uDðt;�L=2Þ in what follows.

Following the standard thermodynamic approach to constitu-
tive modeling, summarized e.g. in Chapter 25 of Jirásek and
Bažant (2002), a state of the system is described using admissible
displacement and damage fields bu : X! R and bx : X! R.
Formally, we write

bu 2 KðtÞ ¼ bu 2W1;2ðXÞ; buðxÞjC ¼ uDðtÞ
n o

ð1Þ

bx 2 Z ¼ bx 2W1;2ðXÞ;0 6 bxðxÞ 6 1 in X
n o

ð2Þ

where KðtÞ denotes the set of kinematically admissible displace-
ments at time t;Z stands for the set of admissible damage fields,

and W1;2ðXÞ is the Sobolev space of functions with
square-integrable distributional derivatives; see e.g. Rektorys
(1982).

Within the adopted variational framework (Mielke and
Roubíček, 2006), the constitutive description of the damage model
is based on

1. The stored energy functional

Eðbu; bxÞ ¼ Estdðbu; bxÞ þ Eregð bxÞ ð3Þ

with the standard part Estd : W1;2ðXÞ � Z! R and the regularizing
part Ereg : Z! R respectively defined as

Estdðbu; bxÞ ¼ 1
2

Z
X
ð1� bxðxÞÞEbu 02ðxÞdx ð4Þ

Eregð bxÞ ¼ 1
2

Z
X

gf 0‘
2
0 bx02ðxÞdx ð5Þ

where bu0 corresponds to an admissible strain field be,
2. The dissipation distance D : Z� Z! R [ fþ1g

Dð bx1; bx2Þ ¼
R

X gf 0ð bx2ðxÞ � bx1ðxÞÞdx if bx2 P bx1 in X

þ1 otherwise

(
ð6Þ

Physically, E represents the energy reversibly stored in the
system and D is the energy dissipated by changing the damage
field from bx1 to bx2. The reversibly stored energy consists of the
standard part Estd and the regularizing part Ereg; the latter depends
on the damage gradient and acts as a localization limiter. Note that
Ereg vanishes for uniform damage states. In Eqs. (4)–(6), E [Pa]
denotes the Young modulus, gf 0 [Jm�3] is the amount of energy
needed to disintegrate a unit volume of the material, and ‘0 [m]
is a characteristic material length, which reflects the size and
spacing of dominant heterogeneities in the microstructure. Later
it will become clear that the ‘‘þ1’’ term appearing in (6) enforces
irreversibility of damage evolution, i.e., ensures that the damage
variable cannot decrease in time.

Now, given the Dirichlet loading uD, functionals E and D and
initial data �u0 2 Kð0Þ and �x0 2 Z, the energetic solution of the
damage problem is provided by time-dependent fields uðtÞ 2 KðtÞ
and xðtÞ 2 Z satisfying (Mielke, 2005):

Global stability: for all t 2 ½0; T�; bu 2 KðtÞ and bx 2 Z

EðuðtÞ;xðtÞÞ 6 Eðbu; bxÞ þ DðxðtÞ; bxÞ ð7Þ

Energy equality: for all t 2 ½0; T�

EðuðtÞ;xðtÞÞ þ VarDðx; ½0; t�Þ

¼ Eðuð0Þ;xð0ÞÞ þ
Z t

0

Z
C

RðsÞ _uDðsÞdCds ð8Þ

where

VarDðx; ½0; t�Þ ¼ sup
XJ

j¼1

Dðxðtj�1Þ;xðtjÞÞ

is the energy dissipated during the time interval ½0; t� (with the
supremum taken over all partitions of ½0; t� in the form

Fig. 1. Bar under uniaxial displacement-controlled tension.
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