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a b s t r a c t

Progressive failure analysis of structures is still a major challenge. There exist various predictive
techniques to tackle this challenge by using both classical (local) and nonlocal theories. Peridynamic
(PD) theory (nonlocal) is very suitable for this challenge, but computationally costly with respect to
the finite element method. When analyzing complex structures, it is necessary to utilize structural
idealizations to make the computations feasible. Therefore, this study presents the PD equations of
motions for structural idealizations as beams and plates while accounting for transverse shear deforma-
tion. Also, their PD dispersion relations are presented and compared with those of classical theory.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Peridynamic (PD) theory was originally introduced for the solu-
tion of deformation field equations (Silling, 2000) without any
structural idealizations. It satisfies all the fundamental balance
laws of classical (local) continuum mechanics; however, it is differ-
ent in the sense that it is a nonlocal continuum theory and it intro-
duces an internal length parameter into the field equations. This
internal length parameter defines the association among the mate-
rial points within a finite distance through micropotentials.
Removal of micropotentials between the material points allows
damage initiation and growth through a single critical failure
parameter regardless of the mixed-mode loading conditions. The
creation of a new (crack) surface is based on a local damage mea-
sure. The local damage is defined as the ratio of broken interactions
to the total number of interactions at a material point.

Finite element analysis (FEA) with traditional elements suffers
from the following shortcomings: (1) the interface between dis-
similar materials is assumed to have zero thickness without any
specific material properties; however, it presents a weak link and
it is usually the location of failure. Therefore, it fails to appropri-
ately model the interface between dissimilar materials. (2)
Failure is a dynamic process, and it requires remeshing. It is com-
putationally costly, and the crack growth is guided based on the
linear elastic fracture mechanics (LEFM) concepts. It breaks down
when multiple complex crack growth patterns develop. (3) Stress

and strain fields are discontinuous, and mesh refinement does
not necessarily ensure accurate stress fields near geometric and
material discontinuities. (4) Finally, crack nucleation is not
resolved. The analysis always requires a pre-existing crack.

In order to remedy or remove these shortcomings, Cohesive
Zone Elements (CZE) and eXtended Finite Elements (XFEM) were
developed; however, CZE requires a priori knowledge of the crack
path. In a complex analysis, it is not practical and the results are
dependent on the mesh (structured or unstructured).
Furthermore, the results are sensitive to the strength parameters
in the traction–separation law of the cohesive zone model.
Determination of these parameters poses additional uncertainties.
Although XFEM removed such uncertainties, it still requires an
external criteria for crack propagation. Thus, the results depend
on the criteria employed in the analysis. It also breaks down when
multiple complex crack growth patterns develop.

The PD theory overcomes the weaknesses of the existing
methods, and it is capable of identifying all of the failure modes
without simplifying assumptions. The PD methodology effectively
predicts complex failure in complex structures under general
loading conditions. Damage is inherently calculated in a PD analy-
sis without special procedures, making progressive failure analysis
more practical.

An extensive literature survey on PD is given in a recently
published textbook by Madenci and Oterkus (2014). A comparison
study between peridynamics, CZE, and XFEM techniques is given
by Agwai et al. (2011). They showed that the crack speeds obtained
from all three approaches are on the same order; however, the
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fracture paths obtained by using peridynamics are closer to exper-
imental results with respect to other two techniques.

Another advantage of PD is its length-scale parameter, which
does not exist in classical continuum mechanics. Such a
length-scale parameter gives PD a nonlocal character. Hence, it
allows the capture of physical phenomena not only at the
macro-scale, but also at various other scales. This characteristic
can be established through the PD dispersion relations. The classi-
cal theory is only valid for a special case of a long wavelength limit;
however, the PD shows dispersion behavior similar to that
observed in real materials. Hence, it is proven to be acceptable to
perform multi-scale analysis simulations.

Although peridynamics is a powerful technique in failure anal-
ysis and has an internal length scale, it is usually computationally
more expensive, especially with respect to finite element analysis.
The computational time can be significantly reduced by using par-
allel computing either by using a CPU (Central Processing Unit)
and/or GPU – based (Graphics Processing Unit) architecture for
which PD equations of motion are very suitable. However, model-
ing very large and detailed structures such as aerospace and mar-
ine vehicles can still be computationally demanding. Hence, in
such cases it is necessary to reduce computational time through
structural idealization. Taylor and Steigmann (2013) proposed a
peridynamic plate model based on bond-based formulation by
using an asymptotic analysis. Their formulation is capable of
capturing out-of-plane deformations for thin plates. Moreover,
O’Grady and Foster (2014a,b) developed a non-ordinary
state-based peridynamic model for Euler–Bernoulli beam and
Kirchhoff–Love plate formulations by disregarding the transverse
shear deformations. Therefore, the focus of this study is to present
a new PD formulation for thin or thick beams and plates while
accounting for transverse shear deformation based on an original
(bond-based) PD formulation. Moreover, PD dispersion relations
are obtained and compared against those from classical theory.

The following sections present the PD kinematics for a
Timoshenko beam and a Mindlin plate, and the corresponding PD
equations of motion as well as the PD material parameters. They
also describe the procedure to determine the surface correction
factors for these parameters and the application of the boundary
conditions and determination of the critical curvature and critical
shear angle in terms of the fracture mechanics parameters.
Finally, the corresponding dispersion relations are derived and
compared with the classical theory. The numerical results establish
the validity of the present formulation by considering simple
benchmark problems.

2. Peridynamic kinematics

At any instant of time, every point in the beam or plate denotes
the out-of-plane deflection and rotations of a material particle, and
these infinitely many material points (particles) constitute the
beam or the plate. In the undeformed state of the body, each mate-
rial point is identified by its coordinates, xðkÞ with ðk ¼ 1;2; . . . ;1Þ,
and is associated with an incremental volume, V ðkÞ, and a mass
density of qðxðkÞÞ: According to the PD theory introduced by
Silling (2000), the motion of a body is analyzed by considering
the pair-wise interaction between material points xðkÞ and xðjÞ.
The interaction between the material points is prescribed through
a micropotential that depends on the deformation and constitutive
properties of the material. Also, a material point is only influenced
by the other material points within a neighborhood defined by its
horizon, d. The micropotentials are zero for material points outside
its horizon. Each material point can be subjected to prescribed
body loads, displacement, or velocity, resulting in motion and
deformation.

2.1. Beam kinematics

As shown in Fig. 1, the transverse shear angles, uðjÞ and uðkÞ, of
material points j and k can be expressed as

uðjÞ ¼
wðjÞ �wðkÞ

nðjÞðkÞ
� /ðjÞsgnðxðjÞ � xðkÞÞ

� �
ð1aÞ

uðkÞ ¼
wðjÞ �wðkÞ

nðjÞðkÞ
� /ðkÞsgnðxðjÞ � xðkÞÞ

� �
ð1bÞ

in which wðjÞ, /ðjÞ and wðkÞ, /ðkÞ represent the out-of-plane deflection
and rotation of material points j and k, respectively. The distance
between the material points j and k is specified as nðjÞðkÞ ¼ xðjÞ � xðkÞ

�� ��.
Considering the material point k as the point of interest, the

transverse shear angle, uðkÞðjÞ, arising from the interaction between
material points j and k can be defined as the average of the trans-
verse shear angles at these material points in the form

uðkÞðjÞ ¼
wðjÞ �wðkÞ

nðjÞðkÞ
�

/ðjÞ þ /ðkÞ
2

sgnðxðjÞ � xðkÞÞ
� �

ð2Þ

The curvature between the material points j and k can be
defined as

jðkÞðjÞ ¼
/ðjÞ � /ðkÞ

nðjÞðkÞ

� �
ð3Þ

When considering the material point j as the point of interest,
the transverse shear angle and curvature for the interaction
between the material points j and k become

uðjÞðkÞ ¼
wðkÞ �wðjÞ

nðjÞðkÞ
� �

/ðkÞ þ /ðjÞ
2

� �
sgnðxðjÞ � xðkÞÞ

� �
or

uðjÞðkÞ ¼ �uðkÞðjÞ ð4aÞ

and

jðjÞðkÞ ¼
/ðkÞ � /ðjÞ

nðjÞðkÞ

� �
or jðjÞðkÞ ¼ �jðkÞðjÞ ð4bÞ

2.2. Plate kinematics

As illustrated in Fig. 2, /ðjÞ and /ðkÞ represent the rotations with
respect to the line of action between the material points j and k.
Considering the material point k as the point of interest, the curva-
ture, jðkÞðjÞ, with respect to the line of action between the material
points j and k can be defined as

jðkÞðjÞ ¼
/ðjÞ � /ðkÞ

nðjÞðkÞ
ð5Þ

Fig. 1. Original and deformed configurations of a Timoshenko beam.
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