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a b s t r a c t

The behavior of chiral elastic materials is of interest to the fields of auxetic materials, carbon nanotubes,
honeycomb structures and mechanics of bone. The chiral effects cannot be described within classical
elasticity. In this paper we study the deformation of isotropic chiral solids by using the theory of
Cosserat elasticity. We investigate the behavior of a bar composed by two different materials. The
intended applications of the solution are to bone implants and various compound cylinders. The bar is
reinforced by a longitudinal rod and is subjected to extension, bending and torsion. It is shown that
the compression of the composed cylinder, in contrast with the result predicted by the theory of achiral
materials, is accompanied by torsion and bending. The method is used to investigate the case of a circular
cylinder reinforced by a circular rod. In this case the compression of the bar produces only a twist around
its axis.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The behavior of chiral materials is of interest for the investiga-
tion of carbon nanotubes (Chandraseker and Mukherjee, 2006; Guz
et al., 2007; Chandraseker et al., 2009), auxetic materials (Lakes,
1991; Lakes, 1998; Prall and Lakes, 1997; Spadoni and Ruzzene,
2012) and bones (Lakes et al., 1983; Park and Lakes, 1986). The
deformation of chiral elastic solids cannot be described by means
of the classical elasticity (Lakes, 2001). In many papers the behav-
ior of chiral materials is studied by using the theory of Cosserat
elasticity (Park and Lakes, 1986; Lakes, 1987; Lakes, 2001;
Healey, 2002; Chandraseker et al., 2009; Ies�an, 2010; Eremeyev
and Pietraszkiewicz, 2012). The Cosserat theory studies continua
with oriented particles which have the six degree of freedom of a
rigid body (Truesdell and Toupin, 1960; Eringen, 1999;
Dyszlewicz, 2004,Epstein, 2010). In chiral materials qualitative
new phenomena are predicted. Lakes and Benedict (1982) studied
the deformation of an elastic cylinder of circular cross-section,
made of an isotropic and homogeneous chiral Cosserat material.
The cylinder is stretched by an axial force and the lateral surface
is free of tractions. It is shown that the rod is predicted to undergo
torsional deformation when is subjected to tensile load.

The linear theory of Cosserat elasticity has been used in many
papers to describe the mechanical behavior of bones (Yang and
Lakes, 1982; Lakes et al., 1983; Park and Lakes, 1986; Fatemi
et al., 2002; Fatemi et al., 2003). Lakes, 1987 stated that ‘‘Human

bone, a natural fibrous composite, displays size effects in torsion
and bending which are consistent with Cosserat elasticity rather
than classical elasticity’’. Yang and Lakes (1982) presented some
experimental observations on the elastic properties of human com-
pact bone.In recent years the mechanical behavior of bones has
been the object of intensive research (Cowin, 2001; Cowin and
Doty, 2007). Many papers have been devoted to the study of bone
implants (Hanumantharaju and Shivanand, 2009; Thielen et al.,
2009). We can assume that the bone and the implant form a body,
B, which can be modeled as a continuum composed of different
materials. In the last decades the theory of elasticity has been used
extensively to model biological tissues. It has been recognized that
biological tissues can be modeled under certain conditions as elas-
tic and that understanding this elastic response is a useful prelim-
inary step to studying the more complicated viscoelastic behavior
(Wilberg and Walton, 2002). We assume that B is composed of two
different elastic materials.

In this paper we study the torsion, bending and extension of a
bar which is composed of two materials, welded together along
the surface of separation. The intended applications of the solution
are to femur bone implants and various compound cylinders. We
assume that the bar is composed of two homogenous and isotropic
chiral Cosserat elastic materials. The paper is structured as follows.
First, we present the basic equations of isotropic chiral Cosserat
elastic solids and formulate the problem of extension, bending
and torsion for a reinforced bar. Then, we define the generalized
plane strain problem associated to the composed body, and intro-
duce four special auxiliary plane problems. In the following section
we present the solution of the problem of extension, bending and
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torsion. It is shown that, in contrast with the result predicted by
the theory of achiral materials, the torsion of the composed chiral
bar is accompanied by extension and bending. Finally, the method
is used to investigate the deformation of a reinforced circular cylin-
der. In this case the compression of the bar produces only a twist
around its axis. In the context of the classical elasticity, the defor-
mation of heterogeneous elastic bodies has been studied in various
works (Muskhelishvili, 1953; Fichera, 1972; Kupradze et al., 1979).

2. Statement of the problem

In this section we present the basic equations of the equilibrium
theory of isotropic chiral Cosserat elastic bodies and the formula-
tion of the problem. Throughout this paper B denotes a right cylin-
der of length h with the cross-section R and lateral boundary P.
We call @B the boundary of B, and designate by ni the components
of the outward unit normal of @B. Throughout this paper a rectan-
gular cartesian coordinate system Oxk; ðk ¼ 1;2;3Þ, is used. The
rectangular cartesian coordinate frame is chosen such that the
x3-axis is parallel to the generators of B and the x1Ox2 plane con-
tains one of terminal cross-sections. We denote by R1 and R2,
respectively, the cross-section located at x3 ¼ 0 and x3 ¼ h. We
assume that the generic cross-section R is a regular region. Let L
be the boundary of the region R1. We shall employ the usual sum-
mation and the differentiation conventions: Greek subscripts are
understood to range over the integers ð1;2Þ, whereas Latin sub-
scripts (unless otherwise specified) to the range ð1;2;3Þ; summa-
tion over repeated subscripts is implied and subscripts preceded
by a comma denote partial differentiation with respect to the cor-
responding cartesian coordinate.

Throughout this paper we consider the linear theory of homo-
geneous and isotropic chiral Cosserat elastic bodies. Let uj be the
displacement vector, and let uj be the microrotation vector. The
strain measures are given by

eij ¼ uj;i þ ejikuk; jij ¼ uj;i; ð1Þ

where eijk is the alternating symbol. We denote by tij the stress ten-
sor and by mij the couple stress tensor. The constitutive equations of
homogeneous and isotropic chiral Cosserat elastic materials are
(Eringen, 1999; Lakes, 2001)

tij ¼ kerrdij þ ðlþ jÞeij þ leji þ C1jrrdij þ C2jji þ C3jij;

mij ¼ ajrrdij þ bjji þ cjij þ C1errdij þ C2eji þ C3eij;
ð2Þ

where dij is the Kronecker delta, and k; l; j; a; b; c and Ck are
constitutive constants. The surface force and the surface moment
acting at a regular point of @B are defined by

ti ¼ tjinj; mi ¼ mjinj;

respectively. The equilibrium equations, in the absence of body
loads, can be written in the form

tji;j ¼ 0; mji;j þ eirstrs ¼ 0: ð3Þ

We assume that the considered cylinder is free of lateral loads.
Thus, we have the following conditions

taina ¼ 0; maina ¼ 0 on P: ð4Þ

We suppose that the cylinder B is subjected to extension, bending
and torsion. Let R ¼ ð0; 0;R3Þ and M ¼ ðM1;M2;M3Þ be prescribed
vectors representing the resultant force and the resultant moment
about O of the tractions acting on R1. On R2 there are tractions
applied so as to satisfy the equilibrium conditions of the body.
Consequently, for x3 ¼ 0 we have the conditionsZ

R1

t3ada ¼ 0; ð5Þ

Z
R1

t33da ¼ �R3; ð6Þ

Z
R1

ðxat33 � e3abm3bÞda ¼ eab3Mb; ð7Þ

Z
R1

ðeab3xat3b þm33Þda ¼ �M3: ð8Þ

Let C be a closed curve contained in R1, which is the boundary of a
regular domain A2 contained in R1. We assume that L and C have no
common points. We denote by A1 the regular domain bounded by
the curves L and C. Let Bq be the cylinder defined by
Bq ¼ fðx1; x2; x3Þ : ðx1; x2Þ 2 Aq;0 < x3 < hg, ðq ¼ 1;2Þ. We suppose
that Bq is occupied by an isotropic chiral Cosserat elastic material

with the constitutive coefficients kðqÞ; lðqÞ; jðqÞ; aðqÞ; bðqÞ; cðqÞ

and CðqÞk , ðq ¼ 1;2Þ. We denote by S the surface of separation of
the two materials, S ¼ fðx1; x2; x3Þ : ðx1; x2Þ 2 C, 0 6 x3 6 hg. We
can consider that the cylinder B is composed of two different mate-
rials which are welded together along S (Fig. 1).

Assume that in the course of deformation, there is no separation
of material along S. The displacement vector, the microrotation
vector, the surface force and the surface moment must be contin-
uous in passing from one medium to another. Accordingly, we have
the conditions

½ui�1 ¼ ½ui�2; ½ui�1 ¼ ½ui�2; ½tai�1n0
a ¼ ½tai�2n0

a; ½mai�1n0
a ¼ ½mai�2n0

a;

ð9Þ

on S, where we have indicated that the expressions in brackets are
calculated for the domains B1 and B2, respectively. Here, n0

a are the
direction cosines of the vector normal to C, outward to A1.

We assume that the elastic potential corresponding to the
material that occupies Bq is a positive definite quadratic form in
the strain measures. The restrictions imposed by this assumption
on the constitutive coefficients are presented in various papers
(Lakes and Benedict, 1982; Dyszlewicz, 2004).

The problem consists in finding the functions ui and ui which
satisfy the Eqs. (1)–(3) on Bq, ðq ¼ 1;2Þ, the conditions (4) on P,
the conditions (5)–(8) on the end located at x3 ¼ 0, and the condi-
tions (9) on S, when the constants R3 and Mk are prescribed. If
R3 ¼ 0 and Ma ¼ 0, then we obtain the torsion problem.

3. Auxiliary generalized plane strain problems

In this section we introduce the generalized plane strain associ-
ated to the composed cylinder B. We suppose now that a body

force f ðqÞj and a body couple gðqÞj are prescribed on Bq. We consider
that on the lateral surface P there are prescribed the surface force
~tj and the surface moment ~mj. We suppose that the external data

f ðqÞj ; gðqÞj ; ~tj and ~mj are all independent of the axial coordinate.

x1

x

x2

3

Fig. 1. A reinforced cylinder.
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