
Effective insights into the geometric stability of symmetric skeletal
structures under symmetric variations

Yao Chen a, Pooya Sareh b, Jian Feng a,⇑
a Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, National Prestress Engineering Research Center,
Southeast University, Nanjing 210096, China
b Advanced Structures group, Department of Engineering, University of Cambridge, CB2 1PZ, UK

a r t i c l e i n f o

Article history:
Received 16 December 2014
Received in revised form 15 May 2015
Available online 2 June 2015

Keywords:
Mobility
Kinematically indeterminate
Group theory
Initial imperfection
Kinematic constraint
Removal of members

a b s t r a c t

Geometric stability is a necessary criterion to guarantee stable equilibrium in engineering structures.
However, we generally encounter enormous calculations to examine the geometric stability when we
make variations on the geometry or the connectivity of a given kinematically and statically indeterminate
structure. This study describes how symmetry is utilized to enhance the mobility and geometric stability
analysis of symmetric skeletal structures. Symmetry-extended mobility distinguishes representations of
the internal mechanisms and self-stress states from relative mobility based on their inherent symmetries
using group-theoretic method. Thus, it acts as an efficient tool to evaluate the order of internal mecha-
nisms that may be indistinguishable by traditional structural approaches. Further, it is used to gain effec-
tive insights into the mobility and geometric stability of a symmetric skeletal structure with
symmetrically perturbed connectivity or geometry. The first-order changes of symmetry-extended
mobility are deduced to describe the changes induced by the variations of nodal coordinates, members,
and kinematic constraints, respectively. Examples are given to verify the correctness and effectiveness of
the proposed method. We show that the geometry or connectivity of kinematically indeterminate sym-
metric skeletal structures can be altered while at the same time retaining geometric stability and some or
all of the original symmetry. The results have potential application in the design of novel deployable
structures.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Geometric stability is necessary to guarantee stable equilibri-
ums. It is defined as a property of a structure which preserves its
geometry under loads and allows the structure to act as a unified
system (Macdonald, 2007). Some questions on this topic such as
‘‘what conditions are necessary/sufficient for geometric stability?’’,
‘‘What static or kinematic characteristics of a structure will change
or remain constant under varied geometries?’’ attract great atten-
tion and interest among researchers. These questions are crucial
for many applications in the fields of civil and mechanical engi-
neering, e.g., for developing novel deployable structures or kine-
matically indeterminate structures.

Exploring answers to the above questions, Maxwell (1864)
developed a mobility rule for pin-jointed structures. More recently,
Pellegrino and Calladine (1986) classified these structures into four
types according to static and kinematic indeterminacy, and

proposed a criterion (Calladine and Pellegrino, 1991) for evaluating
their geometric stability. Using constraint equations and a
statical-kinematic stiffness matrix, Kuznetsov (1991) studied the
kinematic mobility and statical possibility of self-stress states,
and proposed a criterion for immobility.

Further, most skeletal structures are symmetric (Guest et al.,
2010; Wei and Dai, 2010), as they can be transformed into config-
urations that are physically indistinguishable from the original
configuration. Recently, group theory has been utilized as a sys-
tematic mathematical tool for studying the stability of symmetric
structures (Kaveh and Nikbakht, 2008, 2010; Kettle, 2008;
Zingoni, 2009), as well as for designing novel deployable structures
based on an existing deployable structure (Sareh and Guest,
2015a,b). These group-theoretic methods not only reduce the
computational effort, but also give qualitative benefits and insights
(Chen et al., 2014; Zingoni, 2014). Based on the irreducible
representations of symmetry groups, Guest and Fowler proposed
a symmetry-extended mobility rule for symmetric frameworks
(Fowler and Guest, 2000; Guest and Fowler, 2005). Using the
symmetry-extended mobility rule, Guest and Fowler (2007)
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further identified the symmetries of the internal mechanisms and
self-stress states, and thus revealed mobility. Therefore, the geo-
metric stability of some symmetric structures with internal mech-
anisms can be computed efficiently. The recent examples are
illustrated in the cyclically symmetric pin-jointed structures
(Chen et al., 2013) and the highly symmetric over-constrained
structures (Chen et al., 2012a,b). To provide necessary stability
conditions, Connelly et al. (2009) and Chen et al. (2014) used group
theory to study the stability of symmetric pin-jointed structures.
Zhang et al. (2009) used group theory to investigate the geometric
configurations and stability of symmetric tensegrity structures. In
addition, group theory can be extended to analyze the mobility
and geometric stability of finite mechanisms (Zhao et al., 2009;
Ding et al., 2011; Wei et al., 2014; Wei and Dai, 2014) that were
explored with screw theory.

As geometric stability has often been evaluated by the positive
definiteness of the geometric stiffness matrix, Guest (2006) devel-
oped stiffness formulations for prestressed pin-jointed structures.
Based on the energy method (Connelly, 1982; Connelly and
Whiteley, 1996), Vassart et al. (2000) studied the geometric stabil-
ity of kinematically and statically indeterminate structures. The
reported algorithm is capable of identifying the order of internal
mechanisms. Using the principle of potential energy, Kovacs and
Tarnai (2009) investigated the equilibrium and geometric stability
of bar-and-joint assemblies on the surface of a sphere. Masic et al.
(2005) studied the geometric stability of symmetric tensegrity
structures with shape constraints. It has been proved that the
structural equilibrium is preserved under affine node position
transformations. Sultan et al. (2001) formulated the general geo-
metric stability conditions for tensegrity structures. The stability
conditions were expressed as a set of nonlinear equations and
inequalities on the tendon tensions. Subsequently, Sultan (2013)
presented the necessary and sufficient conditions for the exponen-
tial stability of prestressable pin-jointed structures, and discussed
the advantages of the formulation of the tangent stiffness matrix in
analytical manipulations and computations. Meanwhile, some
studies have evaluated the geometric stability of a pin-jointed
structure by heuristic optimization methods such as genetic algo-
rithms and the ant colony algorithms (El-Lishani et al., 2005;
Chen et al., 2012a,b; Koohestani, 2013).

Nevertheless, the above methods usually concern the mobility
and geometric stability of a structure with a specific and fixed
geometry and connectivity. However, in the preliminary analysis
or design process of a structure, the geometry or connectivity
might be variable (Zhang et al., 2014). Obviously, repeated calcula-
tions for the geometric stability of a structure with variable geom-
etry or connectivity are computationally expensive. Therefore,
more efficient numerical methods are required to reduce the rele-
vant computational tasks. Furthermore, it is known that many fac-
tors affect the mobility and geometric stability of a structure. Using
the singular value decomposition technique, Lu et al. (2007) ana-
lyzed the mobility and geometric stability of kinematically indeter-
minate pin-jointed structures under external loads. They showed
that a deployable structure can preserve its geometric stability in
certain conditions. Among the components of the stiffness matri-
ces, the main factors affecting the geometric stability of the struc-
ture include nodal coordinates, the connectivity patterns of
members, and kinematic constraints (Deng and Kwan, 2005;
Ohsaki and Zhang, 2006; Chen et al., 2014).

This study explores the impact of symmetric variations on the
mobility and geometric stability of symmetric skeletal structures.
We proposed a symmetry method that builds on our previous work
(Chen et al., 2012a,b; Chen et al., 2014) and the work by Guest and
co-workers (Fowler and Guest, 2000; Connelly et al., 2009; Guest
et al., 2010). Specifically, we investigate the variations of nodal
coordinates, structural members, and kinematic constraints of

the structures to provide effective insights into their mobility
and geometric stability.

The article is organized as follows. Section 2 introduces the
symmetry-extended mobility rule for kinematically indeterminate
structures under symmetric variations. Current numerical
approaches for evaluating the mobility and geometric stability of
a structure are described in Section 2.1. Previous work on the sym-
metry representations of mechanism modes and self-stress states
is presented in Section 2.2. The first-order variations of
symmetry-extended mobility for structures with varied connectiv-
ity or geometry are derived in Section 2.3. Based on the proposed
method, Section 3 presents the impact of the nodal coordinates
on the geometric stability of a structure. In the same section, the
effect of symmetry migrations is discussed. Sections 4 and 5
demonstrate the impact of the structural members and the impact
of the kinematic constraints on the geometric stability of a struc-
ture, respectively. Section 6 concludes the paper.

2. Symmetry-extended mobility for structures under symmetric
variations

2.1. Mobility of a structure

Maxwell’s rule (Maxwell, 1864) is a necessary condition for the
mobility of pin-jointed structures by counting structural compo-
nents. It is valid for kinematically determinate structures; for stat-
ically and kinematically indeterminate structures (Pellegrino and
Calladine, 1986), Maxwell’s rule should be expressed as:

m� s ¼ T � j� b� k ð1Þ

where T is the magnitude of the rigid-body translation vector, j is
the number of all the pin-joints (including boundary nodes), b is
the number of members, and k is the number of constraints on
the structure (Guest et al., 2010). However, for a free-standing
structure (i.e., k = 0), k is modified as k ¼ T þ R to exclude
rigid-body motions, where R is the magnitude of the rigid-body
rotation vector (Chen et al., 2014).

In Eq. (1), m is the number of internal mechanism modes, which
are the independent vectors in the nullspace of the compatibility
matrix J, i.e., a solution to the compatibility equation (Pellegrino
and Calladine, 1986; Fowler and Guest, 2000):

Jd ¼ 0 ð2Þ

where d is a vector of nodal displacements. Moreover, in Eq. (1), s is
the number of self-stress states, which are the independent vectors
in the nullspace of the equilibrium matrix H, i.e., a solution to the
equilibrium equation (Pellegrino and Calladine, 1986):

Ht ¼ 0 ð3Þ

where t is the vector containing the internal forces in the members.
Using the virtual work principle, it can be shown that H ¼ JT.

The relative mobility, m� s in Eq. (1), is not sufficient to evalu-
ate the geometric stability of statically and kinematically indeter-
minate structures. Calladine and Pellegrino (1991) proposed a
criterion to identify whether self-stress states can stiffen all the
internal mechanism modes. The criterion is equivalent to the pos-
itive definiteness of the quadratic form of the geometric stiffness
matrix KG (Guest, 2006; Ohsaki and Zhang, 2006) satisfying

bTMTKGMb > 0; 8b 2 Rm ð4Þ

where M is the mechanism mode matrix, and b is an arbitrary non-
zero vector. Recent work (Deng and Kwan, 2005; Chen et al.,
2012a,b; Sultan, 2013) reveals that the criterion provides a neces-
sary condition for the stability of pin-jointed structures. Based on
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