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a b s t r a c t

This paper presents an analytic self-similar solution describing an equilibrium of a planar semi-infinite
hydraulic fracture in a poroelastic medium. The equilibrium of the fracture is sustained by a balance
between the pressure of fluid within the fracture and the confining stress due to elasticity of nearby
poroelastic material satisfying the Biot model assumptions. Propagation of fluid in the fracture, leakoff
through the fracture’s walls and filtration in the poroelastic medium towards the fracture’s tip form a
dipole-type pattern of flow. The solution is used for the verification of a numerical algorithm developed
earlier for the pressure transient analysis in water injection wells.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic fractures play an important role in natural processes
and engineering practice. Propagation of hydraulic fractures is
caused by natural or artificial pumping of large amounts of viscous
fluid into the fracture that creates enough pressure on the fracture’s
walls to withstand and overcome the confining geological stresses.
The process of fracture propagation is the interplay of several
equally important factors: transport of viscous fluid in a narrow
gap of the crack, elastic response of the fracture’s walls, filtration
of fluid through the walls and interaction with the surrounding
pore fluid, breakage of the rock and advance of the fracture’s tip.
Modelling of the complete picture of fracture dynamics is a chal-
lenging problem that is rarely solved in its full statement.

Most often the problem is simplified by taking additional
assumptions on the geometry of the fracture, and/or neglecting
the pore pressure in the reservoir, and/or prescribing the leakoff
of fluid through the walls, etc. Among the most popular, are the
1D models by Perkins, Kern, and Nordgren (PKN) and
Khristianovich, Zheltov, Geertsma and de Klerk (KGD), and the gen-
eralisation of the latter model to the radial geometry (penny-shaped
fractures (Adachi et al., 2007)). The leakoff is often modelled with
the use of simplifying hypotheses like the Carter formula
(Economides and Nolte, 2000).

Even the simplified models of fracture growth remain nonlinear
due to the lubrication approximation of the viscous flow within the

crack. This nonlinearity and the singularity of pressure at the frac-
ture’s tip cause problems for numerical solution of the models’
equations. In this respect it is important to have simple exact solu-
tions that would allow one to check the accuracy and convergence
of the numerical algorithm. As for the KGD model, there are a num-
ber of analytical and semi-analytical self-similar solutions (Spence
and Sharp, 1985; Adachi and Detournay, 2002; Carbonell et al.,
1999; Garagash and Detournay, 2005; Garagash, 2006) for different
statements of the problem: small or large rock toughness, constant
or time-dependent injection rate, viscosity dominated or
toughness-dominated regimes. The solutions are used for compu-
tation of asymptotics of pressure and fracture opening near the
fracture tip, for identification of parameters that distinguish vari-
ous regimes of fracture propagation, and as benchmarks for
numerical simulators (see Mishuris et al. (2012) and Lecampion
et al. (2013) and citations therein).

A more reliable mathematical model of a fracture in a poroelas-
tic medium which allows for determination of both pore pressure
and elastic rock displacements jointly with the fracture aperture
and fracture fluid pressure was developed in Shelukhin et al.
(2014). In this model the poroelastic material near the fracture is
considered as a homogeneous permeable medium governed by
Biot equations (Biot, 1955, 1956). Interaction of the reservoir and
fracturing fluid is described naturally within the unified pressure
field. The numerical algorithm presented in Shelukhin et al.
(2014), based on the finite element method, was numerically
tested for convergence, although no comparison with the exact
solution was done.

The goal of the present paper is to construct an exact,
self-similar solution to the model of a hydraulic fracture in a
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poroelastic medium (Shelukhin et al., 2014) and to demonstrate
its applicability for validation of numerical algorithms. The
obtained solution describes an equilibrium of a semi-infinite frac-
ture sustained by a dipole-type filtration flow of fracturing and
pore fluid in the vicinity of a fracture’s tip. The solution is used
for verification of the numerical algorithm of paper (Shelukhin
et al., 2014) for the pressure transient analysis in water injection
wells.

2. Statement of the problem

In this paper we make use of a model proposed in Shelukhin
et al. (2014). The mathematical statement of the problem reads
as follows. We consider a vertical planar semi-infinite fracture
of fixed height 2H extending along the positive x-semiaxis with
z-axis directed upward along the fracture’s tip, see Fig. 1. The
fracture is opened in y direction due to the pressure generated
by fluid flow inside the fracture. Following Shelukhin et al.
(2014) we suppose that fracture’s aperture is constant along
the vertical coordinate z, so the plain strain approximation is
applicable. This implies, that we can limit ourselves to observing
only the central cross-section z ¼ 0 of the fracture, assuming the
2D model of poroelasticity.

The poroelastic medium is assumed to be isotropic and homo-
geneous. It is characterised by its porosity / and permeability k,
with the solid phase displacement uðt;xÞ, and the pore pressure
pðt; xÞ. Pores are saturated by a single-phase incompressible
Newtonian fluid with the effective viscosity g. The linear Darcy
law for the fluid velocity q ¼ �ðk=gÞrp is applicable. We do not
distinguish between pore and fracturing fluid, so the viscosity of
fluid in the fracture is equal to g. The governing equations of the
quasi-static poroelasticity model are the following:

div s ¼ 0; s ¼ kdiv uI þ 2lEðuÞ � apI

Se
@p
@t
¼ div

k
g
rp� a

@u
@t

� �
:

ð1Þ

Here EðuÞ is the strain tensor 2EðuÞij ¼ @ui=@xj þ @uj=@xi

ði; j ¼ 1;2Þ; a is the Biot coefficient, k and l are elasticity moduli,
and I is the identity tensor. The fluid yielding capacity coefficient
Se reflects the dependence of the porosity / on � ¼ trE and p as in
Biot (1955):

@/
@t
¼ a

@�
@t
þ Se

@p
@t
:

Due to the plane strain approximation, the solid phase displace-
ment vector u ¼ ðu1;u2Þ ¼ ðu;vÞ is two-dimensional, all vector
operations are also taken in 2D space of independent variables
ðx1; x2Þ ¼ ðx; yÞ.

Eq. (1) are solved in the domain

X ¼ fðx; yÞ : jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< Rg:

We assume that the fracture is located along x-semiaxis at y ¼ 0.
At the outer boundary CR : jxj ¼ R the confining stress r1 is

applied and the pore pressure p ¼ p1 is prescribed:

CR : p ¼ p1; n � shni ¼ �r1; s � shni ¼ 0; ðshniÞi ¼ sijnj:

Henceforth n is the outer (to the domain X) normal and s is the tan-
gent unit vectors to the boundary; the summation over the repeat-
ing index is implied.

The line y ¼ 0 is divided into the part Cc ¼ fx � 0; y ¼ 0g occu-
pied by the fracture, and the remaining part Cs ¼ fx < 0; y ¼ 0g.
Outside the fracture on the line y ¼ 0 the symmetry conditions
(see Shelukhin et al. (2014)) are satisfied:

Cs :
@u
@y
¼ 0; v ¼ 0;

@p
@y
¼ 0: ð2Þ

With Sðt; xÞ standing for the fluid pressure inside the fracture,
the force balance over the fracture’s wall yields

Cc : p ¼ S; n � shni ¼ �S; s � shni ¼ 0: ð3Þ

Here we neglect the tangential stress due to the fluid friction on the
fracture’s walls in comparison with the normal stress.

The fluid flow in the fracture is governed by the mass conserva-
tion law complemented with the Poiseuille formula:

@w
@t
þ @ðwqÞ

@x
¼ �ql; w � v jy¼0; q ¼ �ð2wÞ2

12g
@S
@x
: ð4Þ

Here 2w is the fracture’s aperture, q is the fluid velocity in the
x-direction. No fluid lag is assumed at the fracture tip.

The leakoff velocity ql is given by the Darcy law as

ql ¼ �
k
g
@p
@y

����
y¼0
: ð5Þ

The resulting equation governing the flow inside the fracture reads

@w
@t
¼ @

@x
w3

3g
@S
@x

� �
þ k

g
@p
@y

����
y¼0
: ð6Þ

The fluid flow rate (per unit height) along the fracture at a fixed sec-
tion x ¼ x0 is computed as

Q ¼ �w3

3g
@S
@x

����
x¼x0 ;y¼0

: ð7Þ

The value of Q is usually prescribed and serves as one of the govern-
ing parameters of the entire process. Note that formula (7) as well
as the Poiseuille formula (4) are valid only for the Newtonian
incompressible fluid.

Eq. (6) is often referred to as the lubrication theory equation
(Adachi et al., 2007). Note that, due to the right-hand side (5),
Eq. (6) represents a boundary condition for equations of the main
model (1). The leakoff velocity ql is obtained here naturally in the
course of the problem’s solution, which differentiates the model
favourably from the usual artificial approximations like Carter’s
formula or other similar expressions (Economides and Nolte,
2000). However, the nonlinearity of the lubrication Eq. (6), makes
the whole model nonlinear.

For computational reasons it is convenient to homogenise the
conditions on the outer boundary CR. It can be done by substrac-
tion of the homogeneous solution corresponding to the compres-
sion of the layer without a fracture by the confining stress and
the pore pressure at infinity:

~u ¼ u� ,x; ~p ¼ p� p1; , � ap1 � r1
2ðkþ lÞ ;

Fig. 1. The geometry of a planar semi-infinite fracture.
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