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a b s t r a c t

In the present paper, the micro-dilatation theory or void elasticity is extended to both large displacement
and large dilatation. Firstly, the deformation gradient tensor has been freshly defined by means of the
matrix exponential function. The newly defined relation for the deformation gradient has painstakingly
investigated for the uniqueness, decomposition issues as well as objectivity and isotropy considerations.
The relation of the displacement gradient and deformation gradient tensor is brought via the matrix
logarithm function. The micro-dilatation theory constitutive laws are derived using the thermodynamic
principles under the zero-centrosymmetric, weakly-centrosymmetric and fully-centrosymmetric cases.
These cases have been derived and scrutinized by the numerical experiments. To achieve this assignment,
the basic loadings are taken into account, e.g. the hydrostatic loading, simple traction and shear. Some
conclusions and outlook pertaining to the above-mentioned cases and variable bulk density have
thereafter discussed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Historical overview on the micro-dilatation theory

The micro-dilatation theory belongs to the generalized
continuum family. The generalized continuum mechanics takes
advantage of the additional state field variables besides the dis-
placement vector, u 2 R3. The choice of the state field variables
sustains various theories, e.g. micro-morphic theory (Eringen,
2001), micro-strain theory (Forest and Sievert, 2006), micro-
stretch theory (Eringen, 2001), micro-polar or so-called Cosserat
theory (Toupin, 1962; Toupin, 1964; Eringen and Suhubi, 1964;
Mindlin, 1964; Eringen, 2001), micro-dilatation theory (Nunziato
and Cowin, 1979; Cowin and Nunziato, 1983) and couple stress
theory (Mindlin and Tiersten, 1962; Mindlin, 1963; Toupin, 1962)
(see Appendix A). As pointed out earlier, the micro-dilatation
theory was initially proposed in the early eighties by Nunziato–
Cowin’s paper (Nunziato and Cowin, 1979) and it was followed

in Cowin and Nunziato (1983, 1984b,a); Passman (1984) and Puri
and Cowin (1985), Cowin (1985) for the plane waves and visco-
elastic behavior. The micro-dilatation was also studied in the
literature at the late 1980’s, e.g. Chandrasekharaiah (1987). There
is a time gap for the micro-dilatation theory or so-called void
elasticity between 1990 and 2000. The most outstanding works
in revival of the micro-dilatation can be addressed in Markov
(1995), Inan and Markov (1995), Scarpetta (2002), Ciarletta et al.
(2003), Dey et al. (August 2004).

Iovane and Sumbatyan utilized the micro-dilatation for the
dynamic problem of the concentration of stresses near the edges
of a crack located in a porous elastic space (Iovane and
Sumbatyan, 2005). Iovane and Nasedkin performed the 2D-FEM
solutions for the elastic-porous bodies in Iovane and Nasedkin
(2005). Some relevant studies pertaining to the application of
micro-dilatation theory to the wave propagation and the numerical
implementations can be also addressed in Iovane and Nasedkin
(2009, 2010a,b). The other relevant works in conjunction with
the micro-dilatation are also available in Birsan (2003), Birsan
(2006) Chirita et al. (March 2006), Chirita and Ghiba (2010a,b),
Singh (2011) and lately in Ramézani et al. (2012b); Thurieau
et al. (2013), Jeong et al. (2013b), Thurieau et al. (2014).
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Nomenclature

Constants
a void diffusion coefficient in [N]

b void coupling modulus in N
m2

h i
or [Pa]

k first Lamé’s coefficient in N
m2

h i
or [Pa]

l second Lamé’s coefficient in N
m2

h i
or [Pa]

lc Cosserat coupling modulus in N
m2

h i
or [Pa]

m Poisson’s ratio in [–]
x micro-dilatation visco-elasticity modulus in [Pa.s]

qR bulk density at reference configuration in kg
m3

h i
G shear modulus in N

m2

h i
or [Pa]

n void stiffness modulus in N
m2

h i
or [Pa]

E modulus of elasticity in N
m2

h i
or [Pa]

G�0 initial G� in the Taylor series expansion in N
m2

h i
or [Pa]

H0 initial hyperstress in the Taylor series expansion in N
m

� �
K bulk modulus in N

m2

h i
or [Pa]

N coupling number in Pa2

Pa2

h i
or [–]

T0 initial stress in the Taylor series expansion in N
m2

h i
or [Pa]

Third-rank tensor quantities
D third-rank micro-dilatation theory centro-symmetric

tensor in the Taylor series expansion in N
m

� �
D2u ¼ ui;jkêi � êj � êk third-rank tensor defined as second deriva-

tion of displacement vector in m
m2

h i
or 1

m

� �
D third-rank stiffness tensor N

m

� �
or [Pa.m]

e third-rank permutation symbol or Levi-Civita tensor [–]

Fifth-rank tensor quantities
D4u ¼ ui;jklmêi � êj � êk � êl � êm fifth-rank tensor defined as

fourth derivation of the displacement vector in m
m4

h i
or

1
m3

h i

Second-rank tensor quantities
�U stretch tensor [–]
� infinitesimal engineering strain tensor m

m

� �
or [–]

expðruÞ matrix exponent function of gradient displacement [–]
1 second-rank identity tensor or so-called identity matrix

[–]
B micro-dilatation coupling modulus matrix in the Taylor

series expansion in N
m2

h i
or [Pa]

Du ¼ ui;jê� êj second-rank tensor well known as
r�Xu ¼ ru :¼ ðr� uÞT in m

m

� �
or [–]

E Cauchy–Green strain tensor in [–]
r� u tensorial gradient of displacement vector [–]
ru :¼ ðr� uÞT displacement gradient tensor m

m

� �
or [–]

r�Xu Lagrangian displacement gradient [–] or m
m

� �
r stress tensor N

m2

h i
or [Pa]

rCA Cauchy stress tensor N
m2

h i
or [Pa]

rMD micro-dilatation stress tensor N
m2

h i
or [Pa]

F second-rank deformation gradient tensor in [–] or m
m

� �
N second rank micro-strain tensor [–]
B second-rank micro-dilatation coupling tensor N

m2

h i
or [Pa]

Q ¼ cosðxi; x0jÞei � ej arbitrary orthogonal transformation second-
rank tensor [–]

T stress tensor in the vicinity of small E; U and u in N
m2

h i
or [Pa]

Scalar quantities
�g visco-elastic term at pore-scale N

m2

h i
or [Pa]

�f pore-dependent body force scalar N
m2

h i
or [Pa]

�p dilatation variable [–]
K volumetric matrix fraction at current configuration m3

m3

h i
or [–]

K0 volumetric matrix fraction at reference configuration
m3

m3

h i
or [–]

I micro-dilatation theory centro-symmetric scalar in the

Taylor series expansion in N
m2

h i
or [Pa]

X bulk volume at current configuration [m3]
X0 bulk volume at reference configuration [m3]
XM0 matrix volume at reference configuration [m3]
XM matrix volume at current configuration [m3]

q bulk density at current configuration in kg
m3

h i
q _Q heat source/sink rate in J

m3s

h i
q_s volumetric entropy rate in J

m3 s K

h i
q bulk density with voids in kg

m3

h i
q‘‘ equilibrated body force N

m2

h i
or [Pa]

e free energy per mass in J
kg

h i
P porosity at current configuration m3

m3

h i
or [–]

P porosity at reference configuration m3

m3

h i
or [–]

QuadðWÞ quadratic part of total strain energy density extracting

from the Taylor series expansion in J
m3

h i
H temperature in [K]
u gradient of micro-dilatation variable 1

m

� �
Di dissipation in Pa

s

� �
G equilibrated scalar micro-body force in the vicinity of

small E; U and u in N
m2

h i
or [Pa]

g ¼ P � S equilibrated scalar micro-body force N
m2

h i
or [Pa]

G� time-independent part of g in the vicinity of small E; U

and u in N
m2

h i
or [Pa]

J ¼ detðFÞ determinant of deformation gradient tensor [–]

P hydrostatic pressure N
m2

h i
or [Pa]

q heat flux rate in J
m2 s

h i
S total hydrostatic pressure which differs P due to the

independence of dilatation N
m2

h i
or [Pa]

WðE;U;uÞ total energy density of the micro-dilatation theory in
J

m3

h i
W0 initial total strain energy density in J

m3

h i
WðFÞ total strain energy density in J

m3

h i
WMDðE;U;uÞ strain energy density (classical part) of the micro-

dilatation theory in J
m3

h i
WVDðE;U;uÞ total void energy density of the micro-dilatation

theory in J
m3

h i
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