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a b s t r a c t

Expressions for the stress triaxiality and the Lode angle along surfaces of elastoplastic structures are
established in case of monotonic loading. The stress triaxiality is shown to be governed by the accumu-
lated plastic strain when traction free boundary condition is considered. The exact expressions obtained
are generalized to any loading thanks to the proposal of a multiaxiality rule or heuristics whose two
parameters are determined from elastic computations of the structure considered: a first one with the
elastic properties of the material, a second one quasi-incompressible. The multiaxiality rule proposed
can then deal with both plane strain and plane stress conditions. The stress triaxiality at the surface is
shown related to the Lode angle. The corresponding expressions are validated on different structures
and loadings. Finally, two applications are presented: the enhancement of energetic methods for plastic-
ity post-processing and the enhancement of homogenization localization laws.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The stress triaxiality defined as the ratio of mean stress or hydro-
static stress divided by von Mises equivalent stress and the Lode
angle are a matter of interest in many mechanical fields as soon
as the studied phenomena are influenced by the stress state.
Ductile damage theories introduced by the early works of
McClintock (1968), Rice and Tracey (1969) and then Gurson
(1977) exhibit a void growth rate governed by the plastic strain rate
but exponentially enhanced by the stress triaxiality (refer to Pineau
and Pardoen (2007) for a review). Stress triaxiality is one of the
main sensitive quantity for continuous damage and ductile failure
(Lemaitre, 1971; Hayhurst and Leckie, 1973; Hult and Broberg,
1974; Hancock and Mackenzie, 1976; Murakami and Ohno, 1978;
Beremin, 1981; Krajcinovic and Fonseka, 1981; Lemaitre and
Chaboche, 1985; Johnson and Cook, 1985; Rousselier, 1987;
Becker et al., 1988; Bernauer et al., 1999; Berdin et al., 2004;
Lemaitre and Desmorat, 2005; François et al., 2012; Lemaitre
et al., 2009). In recent works (Bao and Wierzbicki, 2004; Xue and
Wierzbicki, 2008; Bai and Wierzbicki, 2008), the Lode angle is
shown to play a major role on the fracture locus but also on void
growth (Nahshon and Hutchinson, 2008) at low stress triaxiality.
The stress triaxiality is a matter of interest in surface integrity as
compressive residual stresses are sought to improve the fatigue life
(Field and Kahles, 1964; Field and Kahles, 1971; Jawahir et al.,

2011). It is also a matter of interest in the study of diffusive phe-
nomena in stressed solids, for instance in hydrogen embrittlement
(Simpson, 1981; Huez et al., 1998). The solid diffusion is related to
the atoms spacing and is obviously made easier in equi-biaxial
tension than in uniaxial tension or in compression.

Most of the problems involving these phenomena occur at sur-
faces and usually require elastoplastic computations when yielding
occurs.

It has been shown in a previous work (Desmorat, 2002) that the
stress triaxiality at surfaces of structures subjected to monotonic
loading is related to the accumulated plastic strain in plane strain
condition. There is no systematic studies for more general
multiaxial states, even at surfaces. Desmorat (2002) work can be
extended to a wider range of stress state using different multiaxial
constraints, i.e. different assumptions for the multiaxiality of the
state of stresses or strains – or mixed quantities – at the surfaces.
Such assumptions have mainly been developed in the attempts to
extend the fast energetic methods, such as Neuber (1961) and
Molski and Glinka (1981) methods, to 3D structural cases
(Walker, 1977; Chaudonneret and Culie, 1985; Hoffmann and
Seeger, 1985). One of them, giving good results for axisymmetric
notched structures, is Hoffmann and Seeger (1985) assumption,
that considers a constant strain ratio at the stress concentration
point during loading, strain ratio determined from an elastic com-
putation. However, this assumption does not apply to uniaxial
stress states. None of the literature assumptions automatically
deals with both plane stress and plane strain conditions.

The aim here is to characterize surfaces stress/strain mul-
tiaxiality through the values of the stress triaxiality and of the lode
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angle. Lode angle and stress triaxiality are shown to be related on a
free surface of an elasto-plastic structure, they are functions of the
accumulated plastic strain in monotonic cases. First part of present
work concerns the proposal of a novel assumption for the strain
multiaxiality at surfaces, called next multiaxiality rule.
Expressions for the stress triaxiality established by Desmorat
(2002) are then extended to any stress/strain state along surfaces
through the consideration of the proposed heuristics. These
expressions are assessed on structural examples. Finally, two
applications are presented. The first one is the enhancement of
energetic methods for plasticity post-processing, the second one
the enhancement of homogenization localization laws.

2. Existing stress/strain multiaxiality assumptions

Three dimensional general stress states are usually difficult to
handle in closed-form expressions as stress and strain components
may evolve independently. This evolution is constrained by the
geometry and/or the loading. For plane stress and for plane strain
conditions relations in terms of stress or strain components exist
and can be used to determine analytically the stress triaxiality
(Walker, 1977; Desmorat, 2002). However, in the general case,
the multiaxial constraint must be either numerically determined,
or – as for fast energetic methods – it is hidden in the general
set of equations (Neuber, 1961; Molski and Glinka, 1981;
Hoffmann and Seeger, 1985; Moftakhar et al., 1995; Gallerneau,
2000; Chaboche, 2007; Herbland et al., 2007).

2.1. Stress state at surfaces

Obviously, the stress state occurring along surfaces is either
uniaxial or biaxial even if the rest of the structure presents a com-
plex tridimensional stress state. In the principal coordinate system
(Fig. A.1), the direction associated to principal stress r1 is consid-
ered normal to the free surface (free surface condition: r1 ¼ 0)
and the convention for the principal stresses r2 P r3 is adopted.

The free surface condition gives then r ¼ diag 0;r2;r3½ � so that
the three stress invariants are defined respectively as the hydro-
static stress,

rH ¼
1
3

trðrÞ ¼ 1
3
ðr2 þ r3Þ ð1Þ

as von Mises equivalent stress,

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0 : r0

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2 þ r2
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and as the third invariant of the deviatoric stress, here made
homogeneous to a stress,

r ¼ 27
2

detðr0Þ
� �1=3

¼ 1
2
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where r0 is deviatoric stress tensor,

r0 ¼ r� 1
3

tr r 1 ð4Þ

The stress triaxiality denoted TX in present work and the Lode
angle H are both dimensionless invariants defined respectively
with previous stress invariants or components as

TX ¼
rH
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¼ 1
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trr
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3
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With these conventions, a stress triaxiality equal to 1=3 corre-
sponds to uniaxial tension and �1=3 to uniaxial compression.
Pure shear stress state presents a stress triaxiality equal to zero,
in equibiaxial tension the triaxiality remains equal to 2=3 even
after yielding. However, the stress triaxiality is in general not con-
stant, even at surfaces, and evolves with respect to the loading.

To describe constraint assumptions at surfaces, it is convenient
to define the following stress and strain ratios in terms of the prin-
cipal stress and strain components at surfaces:

k3 ¼
r3

r2
and /1 ¼

�1

�2
; /3 ¼

�3

�2
ð7Þ

These ratios are defined with components obtained from an elasto-
plastic analysis (lowercase Greek letters).

It is also possible to define similar ratios (still at the surface) but
from the principal stresses and strains obtained from a linear elas-
tic analysis of the same structure:

K3 ¼
R3

R2
and U1 ¼

E1

E2
; U3 ¼

E3

E2
ð8Þ

Capital notation means then, ‘‘components obtained from a linear
elastic analysis’’, R and E being the stress and strain tensors
obtained in elasticity.

2.2. Existing multiaxiality assumptions linking elastic and elasto-
plastic quantities

A wide range of assumptions has been proposed in the context
of the extension of fast energetic methods to multiaxial stress state
at stress concentration points such as notches (Walker, 1977;
Chaudonneret and Culie, 1985; Hoffmann and Seeger, 1985;
Moftakhar et al., 1995; Singh et al., 1996; Gallerneau, 2000; Knop
et al., 2000; Buczynski and Glinka, 2003; Sethuraman and
Viswanadha Gupta, 2004; Lim et al., 2005; Chaboche, 2007;
Herbland et al., 2007; Ye et al., 2008). They equal elastic and elasto-
plastic stress, strain, or mixed ratios, i.e. quantities calculated in
elasticity to the same quantities in elasto-plasticity.

The assumption

k3 ¼
r3

r2
� R3

R2
¼ K3 ð9Þ

was first introduced by Walker (1977) who assumed a constant
stress ratio in combination with Neuber’s rule to determinate the
stress and the strain state at notch tip of different geometries. It cor-
responds to a constant stress triaxiality, i.e. a stress triaxiality iden-
tical in elasticity and in plasticity,

TX ¼
1þ k3

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k3 þ k3ð Þ2

q ¼ 1þK3

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�K3 þ K3ð Þ2

q ¼ Telasticity
X ð10Þ

As already mentioned, this holds for some special stress states only,
as for shear, uniaxial tension and equi-biaxial plane stress ten-
sion/compression. However, this does not hold for plane strain con-
ditions and many other intermediate states, even for small plastic
strains.

Fig. A.1. Notations for the coordinate system associated to the principal directions
of the stress and strain tensors. Direction 1 is normal to the free surface.
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