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a b s t r a c t

Linear viscoelastic material behavior is often modeled using a generalized Maxwell model. The material
parameters, i.e. relaxation times and elastic moduli, of the Maxwell elements are determined from either
a relaxation or a Dynamical Mechanical Analysis (DMA) experiments. The underlying mathematical prob-
lem is known to be ill-posed, which means that uniqueness of the identification is not assured and that
small errors in the initial data will conduct to high discrepancies in the identified parameters. The stan-
dard technique to remove the ill-posedness is to chose a priori a series of relaxation times and to identify
only the moduli. The aim of this paper is to propose two techniques to identify an optimal series of relax-
ation times. In the case of the relaxation experiment relaxation times will be optimized from the numer-
ical integration of the measured relaxation spectrum. In the case of the DMA experiments we show that
mathematical results obtained by Krein and Nudelmann can be used to determine the complete series of
relaxation times. The methods are illustrated by identification examples using both artificial and exper-
imental data. The results show that the methods provide a good match of the identified models in term of
relaxation or complex moduli.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of materials including rubber, polymers, com-
posites, concrete, etc. have a viscoelastic mechanical behavior
which is often represented using a generalized Maxwell model
(Findley et al., 1976). The model presents several merits: it is sim-
ple, robust and can be identified from relaxation or Dynamical
Mechanical Analysis (DMA) experiments. Moreover it can cover a
large range of characteristic times in both experiments.
Application of the generalized Maxwell model cover different
classes of polymers amorphous or cross-linked polymers
(Brinson, 2008), polydisperse, high density polyethylene (Otegui
et al., 2013) etc. Other applications cover concrete materials as in
Park and Kim (2001).

Further extension based on the Linear generalized Maxwell
model are cover nonlinear viscoelastic material behaviors, where
different parameters like the elastic moduli or the relaxation times

will further depend on different parameters. Let us cite, the curing
dependent relaxation moduli proposed in Zarrelli et al. for epoxy
materials or a prestrain dependent complex modulus proposed
for propellant in Thorin et al. (2013,).

The identification of the relaxation spectrum of a viscoelastic
system, corresponds to the determination of the relaxation kernel
in an integral equation and is denoted as a Fredholm integral equa-
tion of the first kind. The problem has attracted a lot of attentions
during the last decades due to its inherent difficulties. It is mathe-
matically ill-posed, implying that the identification of the kernel is
not uniquely assured and that small errors in the initial data will
conduct to high discrepancies in the identified kernel. Within the
recent mathematical literature, we can cite the work of Grasselli
(1994), Janno and Von Wolfersdorf (1997), Von Wolfersdorf
(1993), Cavaterra and Grasselli (1997), which recovered the relax-
ation spectrum by reducing the problem to a nonlinear Volterra
integral equation using a Fourier method to solve the direct prob-
lem and by applying the contraction principle. Further results rev-
eled that the problem can also be solved in a heterogeneous
medium, as in Lorenzi (1999), Lorenzi and Romanov (2006) or
recently de Buhanand and Osses (2010) meaning that a spatial
material heterogeneity can also be recovered if specific conditions
are satisfied.
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In order to eliminate the ill-posedness of the identification
problem, a standard technique consists of defining a priori the
characteristic times for the Prony’s series and pursuing the identi-
fication only for the elastic moduli of the different elements. This
technique is described for example in Honerkamp (1989),
Honerkamp and Weese (1990) for the DMA experiments, where
the identification is performed on the complex moduli of the mate-
rial. A recent application example is given in Diani et al. (2012),
where a generalized Maxwell model is identified to describe the
viscoelastic behavior of shape memory polymers. For the relax-
ation experiment a dual method is proposed in Baumgaertel and
Winter (1992), Gerlach and Matzenmiller (2005) where the relax-
ation modulus is identified. Other techniques are based on differ-
ent numerical schemes to tackle this problem, as for example the
combination of Laplace transform and Padé approximants reported
in Carrot and Verney (1996), or the cumulative relaxation spec-
trum proposed in Xiao et al. (2013).

The aim of this paper is to improve the existing techniques by
proposing a novel way to determine a series of characteristic times.
In the case of a DMA experiment, the improvement is based on a
mathematical result given by Krein and Nudelman (1998), which
permits to identify the relaxation times as the zeros of two com-
plex functions constructed from the measured data. This problem
setting does not eliminate the ill-posedness of the initial problem.
Two algorithmic matrices have to be positive definite in order to
numerically solve the problem and this is realized through a regu-
larization technique. However this imposes more natural restric-
tions in the problem when compared with an artificial set of
characteristic times. In the case of the relaxation experiments,
the idea is to optimize the a priori set of relaxation time by impos-
ing a closer representation of the relaxation function by reanalyz-
ing the Riemann integration process. Results for both experiments
provide a smaller number of branches in the generalized Maxwell
model than traditional methods and keep the quality of the
representation.

The paper starts with an overview of the viscoelastic general-
ized Maxwell model where notations and general concepts are
introduced, as the continuous spectrum or the discrete Prony’s ser-
ies. The third section presents the standard identification tech-
nique of parameters from DMA experiments as presented by
Honerkamp (1989), Honerkamp and Weese (1990) and the
theoretical results of Krein and Nudelman (1998) as well as the
proposed identification algorithm. The discussion continues with
the identification method of parameters from relaxation test as
proposed in Baumgaertel and Winter (1992), Gerlach and
Matzenmiller (2005) and the proposed optimal identification of
relaxation times. The two methods are illustrated in the last chap-
ter by a series of examples: first using artificial data, which also
permits to investigate the influence of the noise and second using
experimental data from literature and measurements.

2. Viscoelasticity and Prony’s series

Let us start by recalling some concepts in linear viscoelasticity
in order to define the notations and the basic equations used in this
study.

The viscoelastic constitutive behavior can be represented in the
time domain, according to Markovitz and Hershel (1977), by relat-
ing histories of stresses, r, and strains, e, through the integral
equation:

rðtÞ ¼
Z t

�1
Eðt � sÞ deðsÞ

ds
ds ð1Þ

where E denotes the relaxation kernel.

The dual representation of constitutive equation in the fre-
quency domain, relates the Fourier transform of stress and strains,
denoted as r� and e� respectively, by a linear equation:

r�ðxÞ ¼ E�ðxÞe�ðxÞ ð2Þ

E�ðxÞ is the complex modulus depending of the frequency x and
obtain through the same Fourier transform as stresses or strains.

The two equations in the time domain or frequency domain, are
equivalent and can be obtained the a direct or inverse Fourier
Transform denoted with a �.

The main constitutive unknown is the relaxation spectrum HðsÞ
(Findley et al., 1976) which is related to the relaxation modulus
EðtÞ by:

EðtÞ ¼ E0 þ
Z 1

�1
HðsÞe�t

sd lnðsÞ ð3Þ

and to the dynamical modulus E�ðxÞ ¼ E0ðxÞ þ iE00ðxÞ by:

E0ðxÞ ¼ E0 þ
Z 1

�1
HðsÞ x2s2

1þx2s2 d lnðsÞ EPrimeðxÞ

¼
Z 1

�1
HðsÞ xs

1þx2s2 d lnðsÞ ð4Þ

For practical reasons it is convenient to use a model, where the
continuous spectrum of relaxation HðsÞ is replaced with a finite

spectrum ĤðsÞ (Eq. (5)). This later is interpreted as simple rheolog-
ical elements, springs and dampers, and is denoted generalized
Maxwell model (see Fig. 1). It mathematical description is the
finite Prony’s series ðsi; EiÞ and the spectrum becomes:

ĤðsÞ ¼
Xn

i¼1

Ei d 1� s
si

� �
ð5Þ

where d is the Dirac function. The relaxation time si associated to
the element i is related to the characteristic time of the
spring-damper element, and is defined as the ratio of the viscosity
over the elastic moduli, i.e. si ¼ gi

Ei
.

This representation is often used in finite element models, see
Simo and Hughes (2008) for the time integration within a finite
element code.

In the discrete case of Prony series, the relaxation modulus EðtÞ
is represented as:

EðtÞ ¼ E0 þ
Xn

i¼1

Ei e�
t
si ð6Þ

where E0 represents the stiffness of the model at large times and n
denotes the number of branches of the generalized Maxwell model.
In the frequency domain, the dynamical modulus E�ðxÞ becomes:

E0ðxÞ ¼ E0 þ
Xn

i¼1

Ei x2s2
i

1þx2s2
i

E00ðxÞ ¼
Xn

i¼1

Ei xsi

1þx2s2
i

ð7Þ

Let us now consider that mechanical experiments such as relax-
ation test or cyclic loading test using a Dynamical Mechanical
Analyzer (DMA) provide a data series representing a continuous

Fig. 1. A schematic representation of the generalized Maxwell model as a parallel
association of n Maxwell units, i.e. linear spring and damper ðEi; siÞ and a linear
spring of stiffness E0.
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