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a b s t r a c t

Three-dimensional fretting contacts involving multilayered or functionally graded materials are
commonly seen in mechanical systems. The analyses of surface fatigue and contact failure require the
knowledge of pressure, shear tractions, and stresses. This paper presents a novel method for analyzing
the fretting contacts of these materials. The frictional contact equations are divided into two portions,
one containing the unknown contact pressure and the other the shear tractions, solved by using the
conjugate gradient method with boundary conditions enforced during the iteration. Displacements and
stresses caused by the contact pressure and shear tractions are calculated through the use of the influ-
ence coefficients and by means of the fast Fourier transform. The influence coefficients are obtained from
the analytical frequency response functions derived by the authors, which are the frequency-domain
responses of a multilayered surface system to a unit concentrated normal or tangential force.
Functionally graded coatings are modeled with multiple sufficiently thin layers; and the minimum
number needed to simulate a functionally graded material is numerically determined. This modeling
approach is applied to simulate the fretting contact involving multilayered materials and functionally
graded coatings and to unfold the dependence of the tangential load–displacement relationship on the
degree of material dissimilarity.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs), or functionally graded
coatings (FGCs), where the mechanical properties vary beneath
the surface, are widely used for components in aircraft and aero-
space systems, computer and electronic devices, and mechanical
and nuclear equipment. The materials with gradient properties
can be made more resistant to fatigue and fracture than traditional
homogeneous materials (Suresh, 2001). Contact analyses of FGMs
are essential to provide the stress and deformation information
needed for the understanding of surface and subsurface fatigue
damage.

For two-dimensional problems, Giannakopoulos and Pallot
(2000) investigated the contact between a rigid cylinder and a
FGM with a constant Poisson ratio but varying elastic modulus in
the depth following a power law. Guler and Erdogan (2004) stud-
ied the sliding contact problem of a graded coating bonded to a
homogeneous substrate. However, the coupling between pressure

and shear was not considered in the above researches. The friction-
less contact involving FGMs with arbitrarily varying elastic modu-
lus was investigated by Ke and Wang (2006) using a multilayered
surface structure, where the shear modulus was varied linearly in
each layer while the continuity at the interfaces was maintained.
Further studies on other types of contacts involving graded coat-
ings have also been reported, such as an adhesive contact
(Chidlow et al., 2013), a receding contact (El-Borgi et al., 2006),
and a partial slip contact (Chen and Chen, 2013).

For three-dimensional problems, Giannakopoulos and Suresh
(1997a) derived closed-form solutions for materials with several
special Poisson’s ratios for the displacements and stresses
produced by a concentrated normal force; however, Young’s
modulus along the depth only followed a power or an exponential
law. The normal indentations of FGMs by axisymmetric inventors,
including a flat circular punch, sphere, and circular cone, were
further investigated (Giannakopoulos and Suresh, 1997b). More
complex contact problems involving FGMs, such as those modeled
by the extended Johnson–Kendall–Roberts (JKR) and Derjaguin–
Muller–Toporov (DMT) adhesive contact formulations (Chen
et al., 2009; Jin et al., 2013) and that involving a receding
phenomenon (Rhimi et al., 2009), were also investigated.
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On the other hand, FGMs can be simulated with surface struc-
tures of sufficiently thin layers, where the layers of constant elastic
properties are bonded together perfectly. The advantage of this
method is that the shear modulus or Young’s modulus along the
depth can follow any law, not limited to lineal, power, or exponen-
tial laws that offer mathematical conveniences. This approach
requires the basic solution to the contact problem involving a
multilayered surface structure. For a single-layered surface struc-
ture, the analytical elastic solutions for the contact stresses and
displacements were derived for problems involving axisymmetric
normal loading (Burmister, 1945) and arbitrary normal loading
(Chen, 1971; Chen and Engel, 1972). By using the Papkovich–
Neuber potentials and double Fourier transform, O’Sullivan and
King (1988) derived the analytical solutions of the displacements
and stresses in the frequency domain. Then, the normal contact
problem was solved by using the least squares iteration approach.
When the loads are unit concentrated normal and tangential
forces, the elastic solutions in the frequency domain are called
the frequency response functions (FRFs). Following the same
method of O’Sullivan and King (1988), the analytical solutions for
bi-layered substrate were derived and then applied to solve the
contact problems involving rough surfaces (Cai and Bhushan,
2005; Yu et al., 2013). Furthermore, the analytical frequency
response functions for a multilayered surface system, defined by
recurrence relationships, were derived by Yu et al. (2014). Using
the derived fundamental solutions, several elastohydrodynamic
lubrication problems involving multilayered materials were
successfully solved (Wang et al., 2015).

When the mating materials have different elastic properties, the
contact pressure and shear tractions are no longer independent.
For two-dimensional problems, Spence (1968, 1973) first obtained

several solutions for contact problems subjected to the coupled
normal and tangential loads. Nowell et al. (1988) explored the
shear tractions occurred in a cyclic contact loading process.
Nowell and Hills (1988) analyzed the contact involving an elastic
layer resting on a rigid frictionless substrate. Chen and Chen
(2013) studied the problem of a graded coating bound onto a rigid
substrate indented by a rigid punch. Ke and Wang (2010) devel-
oped a linear multilayer-material model for analyzing the fretting
contact of FGMs. Liu et al. (2012) used a similar method to study
torsional fretting. The finite element method (FEM), as a full
numerical method, has been widely used for simulating fretting
contacts (McColl et al., 2004; Ghosh et al., 2013). It is also applied
to study crack problems (Ghosh et al., 2015). However, the FEM
faces a discretization problem. Most of the current studies used
relative rough girds, especially for the three-dimensional contact
problem, due to the limitation of computer processors and
memories. As a result, the coupling between the pressure and
shear tractions are largely ignored (Leonard et al., 2011).

Recently, the conjugate gradient method (CGM) was employed
(Chen and Wang, 2008; Gallego et al., 2010; Wang et al., 2010) to
solve the contact problems characterized with interactions
between pressure and shear tractions. This method can deal with
the three-dimensional contact problems with complex surface
geometry and roughness. Using the CGM, a wide range of frictional
contact problems were well solved with satisfactory numerical
efficiency, among them are the contacts of single layered surface
structures (Wang et al., 2010, 2011b), rough surfaces (Chen and
Wang, 2009), elasto-plastic materials (Wang et al., 2013b), and
inhomogeneities materials (Wang et al., 2013a), and that under
more complex loads involving a tangential force and a twisting
moment (Wang et al., 2011a).

Nomenclature

a Hertzian contact radius, mm
AðkÞ, AðkÞ, BðkÞ, BðkÞ, CðkÞ, CðkÞ unknown coefficients in Papkovich–

Neuber potentials in the frequency domain in layer k
Cui

p influence coefficients relating pressure to surface dis-
placements, mm/MPa

C
rðkÞ

ij
p influence coefficient relating pressure to stresses in

layer k
C�ui

qx
, C�ui

qy
influence coefficients relating shear tractions to surface
displacements, mm/MPa

C
rðkÞ

ij
qx

, C
rðkÞ

ij
qy

influence coefficients relating shear tractions to stres-
ses in layer k

Ek Young’s modulus of layer k, MPa
E0 Young’s modulus at surface, MPa
Es Young’s modulus of the sphere and substrate, MPa
Gk shear modulus of layer k, MPa
Fx, Fy applied tangential load along the x, y direction, N
g surface gap, mm
h0 initial separation between two surfaces, mm
hk thickness of layer k, mm
Ic set of all grid nodes in the contact region
Islip set of all grid nodes in the slip zone
Istick set of all grid nodes in the stick zone
J2 the second invariant of the stress deviator tensor, MPa2

L total number of layers
m, n Fourier-transformed frequency variables with respect to

x and y
M, N number of discrete grid points in the x and y directions
p pressure, MPa
ph maximum Hertzian pressure, MPa
qx, qy shear tractions parallel to the x, y direction, MPa
R radius of the sphere, mm

sx, sy relative slip distance parallel to the x, y direction, mm
TOL tolerance
uðkÞi elastic displacement of layer k, mm
�ux, �uy, �uz surface elastic displacements in three directions, mm
W applied normal load, N
x, y, zk Cartesian coordinates in the spatial domain, mm
Y shape function
a distance of a node (m, n) to the origin in the frequency

domain
dx, dy, dz rigid displacement parallel to the x, y, and z direction,

mm
dij Kronecker delta
Dx, Dy, Dz

grid size in the x, y, and z direction, mm
DE energy dissipated per cycle, N�mm
lf friction coefficient
mk Poisson’s ratio of layer k
rðkÞij stress of layer k, MPa
rvon von Mises stress ð

ffiffiffiffiffiffiffi
3J2

p
Þ, MPa

u and wðw1;w2;w3Þ Papkovich–Neuber potentials

Special marks
� or FTxy double continuous Fourier transform about x and y
^ discrete Fourier transform
IFFT inverse fast Fourier transform

Superscripts or subscripts
k = 1, . . . ,L

layer number
m derivative with respect to m

2 Z. Wang et al. / International Journal of Solids and Structures xxx (2015) xxx–xxx

Please cite this article in press as: Wang, Z., et al. An efficient method for solving three-dimensional fretting contact problems involving multilayered or
functionally graded materials. Int. J. Solids Struct. (2015), http://dx.doi.org/10.1016/j.ijsolstr.2015.04.010

http://dx.doi.org/10.1016/j.ijsolstr.2015.04.010


Download English Version:

https://daneshyari.com/en/article/6748835

Download Persian Version:

https://daneshyari.com/article/6748835

Daneshyari.com

https://daneshyari.com/en/article/6748835
https://daneshyari.com/article/6748835
https://daneshyari.com

