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a b s t r a c t

Recently, simple non-singular stress fields of cracks of mode I and mode III have been published by
Aifantis (2009, 2011), Isaksson and Hägglund (2013) and Isaksson et al. (2012). In this work we
investigate the physical meaning and interpretation of those solutions and if they satisfy important
physical conditions (equilibrium, boundary and compatibility conditions).

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During the last years, some non-singular crack fields have been
published in the literature (Aifantis, 2009, 2011; Isaksson and
Hägglund, 2013; Isaksson et al., 2012) neglecting equilibrium,
boundary and compatibility conditions. The aim of that research
was the regularization of the classical singular crack fields. In fact,
the non-singular crack fields are zero at the crack tip. However, not
any equilibrium condition was used by Aifantis (2011), Isaksson
and Hägglund (2013) and Isaksson et al. (2012). Therefore, it is
doubtful if their results are correct from the point of view of frac-
ture mechanics.

On the other hand, Ari and Eringen (1983), Eringen and Suresh
(1983) and Eringen (1984) (see also Eringen, 2002) investigated
cracks in the framework of nonlocal elasticity of Helmholtz type
in the 80s. Eringen (1984, 2002) found a non-singular stress of a
mode III crack zero at the crack tip. For the mode I crack problem,
using appropriate boundary conditions, Ari and Eringen (1983)
(see also Eringen, 2002) found a non-singular stress finite at the
crack tip and becoming zero inside the crack. A regularization pro-
cedure was also discussed for crack curving in Eringen and Suresh
(1983).

The aim of this paper is to show that the recent crack solutions
given by Aifantis (2009, 2011), Isaksson et al. (2012) and Isaksson
and Hägglund (2013) cannot be the correct solutions of a nonlocal
or gradient compatible elastic fracture mechanics problem.

Therefore, the modest goal of the present paper is not to give
new solutions but rather to discuss existing and recently given
crack solutions using gradient enhanced elasticity theories.

The paper is organized as follows: Section 2 provides the basics
of the theories of nonlocal elasticity and strain gradient elasticity.
Next, Section 3 explains why the non-singular mode III crack solu-
tion given by Aifantis (2009, 2011) cannot be considered as a solu-
tion of a nonlocal and gradient elastic fracture mechanics problem.
The same is explained in Section 4 for the mode I crack solution
given by Aifantis (2011), Isaksson et al. (2012) and Isaksson and
Hägglund (2013). Finally, in Section 5 a possible way-out for the
physical interpretation of the non-singular solutions is discussed.

2. Theoretical framework

In this section we outline the basics of the theories of nonlocal
elasticity and gradient elasticity.

2.1. Theory of nonlocal elasticity of Helmholtz type

In the theory of nonlocal elasticity (e.g., Eringen, 2002, 1983),
the so-called nonlocal stress tensor tij is defined at any point x of
the analyzed domain of volume V as

tijðxÞ ¼
Z

V
aðjx� yjÞr0

ijðyÞdVðyÞ; ð1Þ

where aðjx� yjÞ is a nonlocal kernel and r0
ij is the stress tensor of

classical elasticity defined at the point y 2 V as

r0
ijðyÞ ¼ kdije0

kkðyÞ þ 2le0
ijðyÞ; ð2Þ
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with k;l are the Lamé constants, dij is the Kronecker delta and e0
ij

denotes the classical strain tensor, which is the symmetric part of
the classical distortion tensor

e0
ij ¼

1
2

b0
ij þ b0

ji

� �
: ð3Þ

We employ a comma to indicate partial derivative with respect
to rectangular coordinates xj, i.e. tij;j ¼

@tij

@xj
. As usual, repeated indi-

ces indicate summation.
In absence of body forces, the nonlocal stress tensor satisfies the

equilibrium condition

tij;j ¼ 0; ð4Þ

which means that the stress is self-equilibrated. In addition, the
classical stress tensor fulfills the equilibrium equation of classical
elasticity

r0
ij;j ¼ 0: ð5Þ

If the nonlocal kernel function aðjx� yjÞ is the Green function
(fundamental solution) of the differential operator L ¼ 1� ‘2D, i.e.

ð1� ‘2DÞaðjx� yjÞ ¼ dðx� yÞ; ð6Þ

with ‘;D; d being a characteristic length scale (‘ P 0), the Laplacian
and the Dirac delta function, respectively, then the integral relation
(1) reduces to the inhomogeneous Helmholtz equation

ð1� ‘2DÞtij ¼ r0
ij; ð7Þ

where the classical stress is the source for the nonlocal stress. The
natural boundary condition reads

tijnj ¼ t̂i; ð8Þ

where ni and t̂i represent the normal to the external boundary and
the prescribed boundary tractions, respectively. In nonlocal elastic-
ity, no nonlocal strain exists. Thus, using a nonlocal kernel, being a
Green function, yields a differential equation for tij instead of an
integrodifferential equation in the ‘strongly’ nonlocal theory with
seemingly and physically equivalent solution at the output. In such
a ‘weakly’ nonlocal elasticity the concept of a gradient theory might
be used (Maugin, 1979, 2012). The ‘weakly’ nonlocal theory of
elasticity represented by Eqs. (4)–(7) is called of Helmholtz type
because the Helmholtz operator, L ¼ 1� ‘2D, enters in the form of
Eqs. (6) and (7).

It was pointed out by Eringen and Suresh (1983) that the stress
field tij of a crack is obtained by solving Eq. (7), subject to regularity
conditions, i.e., tij must be bounded at the crack tip and at infinity.
This is borne out from the problems of non-singular dislocations
(Eringen, 2002). At large distance from the crack tip, the classical
solution will approximate the stress field well, namely if ‘! 0,
Eq. (7) gives tij ! r0

ij. This also suggests that one may obtain a full
solution of Eq. (7) and match it to the outer solution r0

ij in order to
obtain a non-singular solution.

2.2. Theory of gradient elasticity of Helmholtz type

In the theory of gradient elasticity (see, e.g., Mindlin, 1964;
Mindlin and Eshel, 1968; Eshel and Rosenfeld, 1970; Jaunzemis,
1967), the equilibrium condition is given by

sij;j � sijk;jk ¼ 0; ð9Þ

where sij is the Cauchy-like stress tensor and sijk is the so-called
double-stress tensor. It can be seen in Eq. (9) that the Cauchy-
like stress tensor sij is, in general, not self-equilibrated. The nat-
ural boundary conditions in strain gradient elasticity are much
more complicated than the corresponding ones in nonlocal elas-

ticity; they read (see, e.g., Mindlin and Eshel, 1968; Jaunzemis,
1967)

sij � @ksijk

� �
nj � @ j sijknk

� �
þ nj@l sijknknl

� �
¼ �ti

sijknjnk ¼ �qi

)
on @X; ð10Þ

where �ti and �qi are the prescribed Cauchy traction vector and the
prescribed double stress traction vector, respectively. Moreover,
@X is the smooth boundary surface of the domain X occupied by
the body.

In a simplified version of strain gradient elasticity, called gradi-
ent elasticity of Helmholtz type (e.g., Lazar and Maugin, 2005;
Lazar, 2013; Polyzos et al., 2003), the double stress tensor is nothing
but the gradient of the Cauchy-like stress tensor multiplied by ‘2

sijk ¼ ‘2sij;k ð11Þ

and the Cauchy-like stress tensor reads

sij ¼ Cijlkbkl; ð12Þ

where bij denotes the elastic distortion tensor and Cijkl is the tensor
of the elastic moduli given by

Cijkl ¼ l dikdjl þ dildjk

� �
þ kdijdkl: ð13Þ

Substituting Eq. (11) into (9), Eq. (9) simplifies to the following
partial differential equation (pde) of 3rd order

ð1� ‘2DÞsij;j ¼ 0 ð14Þ

and, using Eq. (12), Eq. (14) reads in terms of the elastic distortion
tensor

ð1� ‘2DÞCijklbkl;j ¼ 0: ð15Þ

Following Jaunzemis (1967), the polarization of the Cauchy-like
stress, sometimes called ‘total stress tensor’, is defined by

rij :¼ ð1� ‘2DÞsij: ð16Þ

Then the equilibrium condition (14) reads in terms of the total
stress tensor

rij;j ¼ 0: ð17Þ

On the other hand, using the so-called ‘Ru–Aifantis theorem’
(Ru and Aifantis, 1993) in terms of stresses, Eq. (14) can be written
as an equivalent system of pdes of 1st order and of 2nd order,
namely

r0
ij;j ¼ 0; ð18Þ
ð1� ‘2DÞsij ¼ r0

ij; ð19Þ

where r0
ij is the classical stress tensor. Eqs. (18) and (19) also play

the role of the basic equations in Aifantis’ version of gradient elas-
ticity (see, e.g., Askes and Aifantis, 2011). Using the ‘Ru–Aifantis
theorem’, the total stress tensor rij is identified with the classical
stress tensor r0

ij:

rij � r0
ij: ð20Þ

The so-called ‘Ru–Aifantis theorem’ is a special case of a more
general technique well-known in the theory of partial differential
equations (see, e.g., Vekua, 1967). Moreover, the ‘Ru–Aifantis the-
orem’ is restricted only to situations involving a body of infinite ex-
tent (with no need to enforce boundary conditions). In the
presence of boundary conditions, the ‘Ru–Aifantis theorem’ is no
longer valid and can lead to erroneous solutions. Therefore, it is
questionable if the ‘Ru–Aifantis theorem’ should be used in the
construction of crack solutions in gradient elasticity. In physics,
such a method of the reduction of the order of higher order field
equations is known and used in the so-called Bopp–Podolsky
theory (Bopp, 1940; Podolsky, 1942), which is the gradient theory
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