
Reconstruction of a constitutive law for rubber from in silico
experiments using Ogden’s laws

Maya de Buhan a,⇑, Antoine Gloria b,c, Patrick Le Tallec d, Marina Vidrascu e,f

a MAP5, CNRS UMR 8145, Université Paris Descartes, Sorbonne Paris Cité, France
b Département de Mathématique, Université Libre de Bruxelles, Belgium
c MEPHYSTO Team, INRIA Lille – Nord Europe, Villeneuve d’Ascq, France
d LMS, École Polytechnique, Palaiseau, France
e Inria Paris-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
f Sorbonne Universités, UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 4 Place Jussieu, 75252 Paris Cedex 05, France

a r t i c l e i n f o

Article history:
Received 28 May 2014
Received in revised form 6 February 2015
Available online 12 March 2015

Keywords:
Parameter estimation
Multiscale modeling
Rubber elasticity
Polymer physics

a b s t r a c t

This article deals with the following data assimilation problem: construct an analytical approximation of
a numerical constitutive law in three-dimensional nonlinear elasticity. More precisely we are concerned
with a micro–macro model for rubber. Macroscopic quantities of interest such as the Piola–Kirchhoff
stress tensor can be approximated for any value of the strain gradient by numerically solving a nonlinear
PDE. This procedure is however computationally demanding. Hence, although conceptually satisfactory,
this physically-based model is of no direct practical use. The aim of this article is to circumvent this dif-
ficulty by proposing a numerical strategy to reconstruct from in silico experiments an accurate analytical
proxy for the micro–macro constitutive law.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this article we address a problem which exhibits at the same
time very standard and rather unusual features: data assimilation
in nonlinear elasticity for a micro–macro constitutive law.

Let us start with the features which make our problem a stan-
dard one in mechanical engineering: we wish to reconstruct an
analytical constitutive law from a set of experiments. In particular,
we aim at reconstructing a function (the energy density) from a set
of samples (the experiments). Such problems are quite standard in
elasticity. We refer the reader to the review paper Bonnet and
Constantinescu (2005). Most of the constitutive laws used in rub-
ber elasticity (or more generally in computational mechanics) are
phenomenological (see for instance Ogden (1972), Ball (1977),
Ogden (1986), Ciarlet (1988)): the law is supposed to have a speci-
fic analytical form characterized by some explicit parameters. For
the constitutive law to be of any use, these parameters have to
be fitted. This is where things get complicated. On the one hand,
the more parameters the more accurate the phenomenological
law. On the other hand, the more parameters the more difficult

the data assimilation problem. There is a wide choice of measure-
ments which can be used to estimate the parameters, see for
instance Bonnet and Constantinescu (2005) and the references
therein. For nonlinear materials, few theoretical results are avail-
able, and parameter identification methods are often based on
direct measurements of the stress associated with a homogeneous
strain and give satisfactory results only for a very small number of
parameters. It is for instance rather well-admitted that Ogden’s
laws have the potential to model rubber elasticity quite well
(Ogden, 1972; Ball, 1977; Ciarlet, 1988). Yet for reasonable sets
of experimental data, there may be several possible sets of fitted
parameters which give similar results on the set of data but which
yield completely different behaviors in other regimes of interest, as
shown in Ogden et al. (2004). Hence, although methods have been
developed to fit parameters in Ogden’s laws (Ogden, 1972; Twizell
and Ogden, 1983; Gendy and Saleeb, 2000; Ogden et al., 2004),
Ogden’s laws are not so used in practice. The associated inverse
problem is indeed often ill-posed: the observations obtained by
mechanical experiments are too partial to characterize the con-
stitutive law. Although this inverse problem is standard, there is
up to now no fully satisfactory way to solve it in practice.

Let us turn now to the unusual features of this problem. Unlike
purely phenomenological constitutive laws, the model under
investigation here is based on some physical grounds at the scale
of the polymer-chain network (Gloria et al., 2013). In particular

http://dx.doi.org/10.1016/j.ijsolstr.2015.02.026
0020-7683/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: maya.de-buhan@parisdescartes.fr (M. de Buhan), agloria@ulb.

ac.be (A. Gloria), patrick.letallec@polytechnique.edu (P. Le Tallec), marina.vidras-
cu@inria.fr (M. Vidrascu).

International Journal of Solids and Structures 62 (2015) 158–173

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2015.02.026&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.026
mailto:maya.de-buhan@parisdescartes.fr
mailto:agloria@ulb.ac.be
mailto:agloria@ulb.ac.be
mailto:patrick.letallec@polytechnique.edu
mailto:marina.vidrascu@inria.fr
mailto:marina.vidrascu@inria.fr
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.026
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


the micro–macro constitutive law is obtained by a rigorous
thermodynamic limit starting from a physically-based (without
phenomenological parameters) model (Alicandro et al., 2011). As
a by-product of the analysis, we learn that the associated micro–
macro energy density satisfies some formula, which involves the
solution of a nonlinear elasticity problem on a sequence of
domains of increasing size (see Theorem 1 in Section 2). This is
the so-called cell-problem in stochastic homogenization.
Although this energy density is not analytical, it can be numerically
approximated at any deformation gradient, as shown in Gloria
et al. (2013). Hence it seems there is no need for data assimilation.
Things are unfortunately not that simple and the solution method
used to approximate the energy density is computationally very
demanding. One cannot afford to include it into a nonlinear elastic-
ity software. This is where data assimilation comes into the picture
again: given a set of data generated by solving numerically the cell-
problem we wish to construct an analytical approximation of the
micro–macro constitutive law.

In this article we shall show that the specific features of our
problem make the ‘‘standard inverse problem’’ recalled above
much nicer. Data assimilation in rubber elasticity may be an ill-
posed problem because the sets of data which are available are
often too partial (engineering stress for uniaxial and biaxial trac-
tions for instance). In particular all the regimes cannot be tested
by mechanical experiments. On the contrary, for the micro–macro
model and the numerical approximation method of the associated
energy density we are dealing with here, any strain gradient can be
considered: we have at our disposal an arbitrary amount of data at
arbitrary values of the strain gradient. This opens the door to the
use of reliable and efficient data assimilation methods. In addition,
the analysis of the model and of its thermodynamic limit per-
formed in Alicandro et al. (2011) is a very good guide to restrict
the class of admissible energy densities in which to solve the
inverse problem — which is the aim of our study.

The article is organized as follows. In Section 2 we briefly recall
the micro–macro model for rubber, its structural properties and
the link with analytical constitutive laws. In the following section,
we describe the inverse problem to be solved and the numerical
solution method used (an evolutionary algorithm). Section 4 is
dedicated to the calibration and test of the method, for different
analytical energy densities and with exact and noisy data. In the
last section, we apply the method to the micro–macro model of
interest. The numerical results are very good, both qualitatively
and quantitatively. In particular they draw the link between a
physical model based on ‘‘first principles’’ (the micro–macro
model) and phenomenological constitutive laws for rubber.

2. Model and parametrization

2.1. Homogenization of a discrete model for rubber

In this subsection we recall the discrete stochastic homogeniza-
tion results of Alicandro et al. (2011) which have allowed us to
study the thermodynamic limit of a discrete model for rubber in
Gloria et al. (2013). To this aim, we have to make precise the model
for the polymer-chain network, and for the associated energy func-
tional. The polymer-chain network is modeled by a stochastic
lattice.

Definition 1. We say that a stochastic point process L in R3 (that is
a sequence of random points in R3) is admissible if:

� (regularity) There exist r P r > 0 such that almost surely:
– any two points of L cannot be closer than r (hard-core

property),

– any ball of radius r contains at least one point of L (non-
empty space property);

� (stationarity) L and xþ L have the same statistics for all x 2 R3;
� (ergodicity) L is ergodic.

We further assume that the Delaunay tessellation T of R3 into tet-
rahedra associated with L (that is, the vertices of T are given by L)
is almost surely unique (see Delone et al. (1976)).

In particular the edges of the Delaunay tessellation represent
the end-to-end vectors of the polymer-chains. For rigorous def-
initions of admissible stochastic lattices and their Delaunay tes-
sellations, we refer the reader to Alicandro et al. (2008) and
Gloria and Penrose (2013), and to the references therein. Let us also
introduce a rescaling of L and T . For all e > 0, we set Le :¼ eL,
which satisfies Definition 1 with er and er in place of r and r, and
with T e :¼ eT in place of T .

Given a tessellation T e of R3, one may define the space S T eð Þ of
continuous and piecewise affine deformations ue on T e. Such
deformations ue are such that their gradients rue are piecewise
constant on T e. In particular, for every element Te (tetraedron) of
the tessellation T e;detrue jTe measures the ratio of volume
between ueðTeÞ and Te.

We are now in position to associate an energy with any defor-
mation field ue 2 SðT eÞ, on an open bounded domain D of R3. We
consider two contributions: an energy associated with the changes
of length of the edges of the tessellation, and an energy associated
with the changes of volume of the elements of the tessellation.
More precisely, denoting by Ed the set of edges of T , we define
the energy of ue 2 S T eð Þ on D by

Feðue;DÞ ¼ e3
X

e2Ed ;e�D=e

Wnn je1 � e2j;
jueðee1Þ � ueðee2Þj

eje1 � e2j

� �

þ
X

T2T ;T�D=e

jeTjWvol detrue jTe

� �
; ð1Þ

where e ¼ ðe1; e2Þ (e1 and e2 are the two vertices of the edge e),
Wnn : Rþ � Rþ ! Rþ is the energy of the deformed edges, and
Wvol : R! Rþ is the volumetric energy. Denote by M3ðRÞ the set
of 3� 3-real matrices. We make the following assumptions on
Wnn and Wvol:

Hypothesis 1. There exist p > 1 and a positive constants C such
that for all r 6 c 6 r; k P 0, and K 2M3ðRÞ,

1
C

kp � C 6Wnnðc; kÞ 6 Cðkp þ 1Þ; ð2Þ

Wvolðdet KÞ 6 CðjKjp þ 1Þ: ð3Þ

In terms of mechanical properties these assumptions that have
to be made for the analysis have two unphysical features: polymer-
chains have infinite extensibility and the volumetric term does
ensure the non-interpenetrability of matter. We then have the fol-
lowing convergence result (see Alicandro et al. (2008, Theorem 5)).

Theorem 1. For all e > 0, let Le and T e be the rescaled stochastic
point process and the associated Delaunay tessellation of Definition 1.
For every open bounded subset D of R3 with a Lipschitz-continuous
boundary, we consider the energy Feðue;DÞ defined by (1) for

ue 2 S T eð Þ, and extended by þ1 on W1;pðDÞ n S T eð Þ, for
p > 1; Wnn, and Wvol as in Hypothesis 1. Then the functional

Feð�;DÞCðLpðDÞÞ-converges on W1;pðDÞ as e! 0 to the functional
FV ð�;DÞ defined by

FVðu;DÞ ¼
Z

D
WVðruðxÞÞdx; ð4Þ
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