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a b s t r a c t

I present conditions for compatibility of velocities, conservation of mass, and balance of momentum and
energy across moving discontinuities in inextensible strings and sheets of uniform mass density. The bal-
ances are derived from an action with a time-dependent, non-material boundary, and reduce to matching
of material boundary conditions if the discontinuity is stationary with respect to the body. I first consider
a point discontinuity in a string and a line discontinuity in a sheet, in the context of classical inertial
motion in three Euclidean dimensions. I briefly comment on line discontinuities terminating in point dis-
continuities in a sheet, discontinuous line discontinuities in a sheet, and an approach to dynamic fracture
that treats a crack tip in a sheet as a time-dependent boundary point. I provide two examples of general
solutions for conservative sheet motions near a line discontinuity. The approach also enables treatment of
actions depending on higher derivatives of position; I thus derive balances for an elastica which are
applicable to moving contact problems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of strings and sheets offer many surprises (Hanna
and King, 2011; Cambou et al., 2012; Coteron; Judd; Mould, 2013;
Biggins, 2014; Virga, 2014; Rennie, 1972; Calkin, 1989; Schagerl
et al., 1997; Tomaszewski et al., 2006; Hamm and Géminard,
2010; Taneda, 1968; Bejan, 1982; Guven et al., 2013). Their motion
unregularized by any resistance to bending, these perfectly flexi-
ble, yet inextensible bodies may develop persistent kinks and other
discontinuities in their shapes. Embedded in three-dimensional
space, they come into partial contact with steric, frictional, and
adhesive obstacles, and thereby experience discontinuous external
applied forces. Thus, the mechanics of such discontinuities should
be studied.

In this paper, I consider moving discontinuities in one- and two-
dimensional flexible bodies (see Figs. 1 and 2). The bodies are mod-
eled as inextensible curves and surfaces. Physical examples of such
discontinuities include peeling fronts of adhesive tapes and coat-
ings (Ericksen, 1998; Burridge and Keller, 1978; Cortet et al.,
2013; Hure and Audoly, 2013), lift-off points of chains and ropes
moving around pulleys or table edges (Rennie, 1972; Prato et al.,
1982; Calkin, 1989; Cambou et al., 2012), pick-up points of chains

from piles or rigid surfaces (Cayley, 1857; Hanna and King, 2011;
Biggins, 2014; Virga, 2014; Virga, 2015), propagating impacts in
cables and membranes (Ringleb, 1957; Cristescu, 1964; Beatty
and Haddow, 1985; Yokota et al., 2001; Tomaszewski et al.,
2006; Hanna and Santangelo, 2012; Vandenberghe and Villerm
aux, 2013; Kanninen and Florence, 1967; Farrar, 1984; Haddow
et al., 1992; Albrecht and Ravi-Chandar, 2014), geometrically com-
plex propagating kinks in a windblown flag or the tubular body and
arms of an Airdancer� (airdancers.com/about/), brittle cracks,
tears, and cuts in sheet materials (Burridge and Keller, 1978;
Roman, 2013; Vandenberghe and Villermaux, 2013), and groove
structures in impressed bladders. It also seems likely that kinks
may form in the transverse waves resulting from hairpin turn
maneuvers of towed cables (Ivers and Mudie, 1973; Sanders,
1982; Matuk, 1983). In some of these examples, the discontinuity
is an idealization that allows one to ignore a regularizing length
scale, such as the body thickness, and with it higher-order terms
in equations of motion, such as bending forces. When considering
an elastic sheet, it may be easier to treat membrane equations and
a jump condition than to explicitly examine an internal bending
boundary layer and perform asymptotic matching. Thus, jump con-
ditions may be an effective tool in studies of thin elastic bodies. For
dynamic partial contact problems involving continua, the correct
jump conditions are essential; one cannot simply apply static
boundary conditions.

http://dx.doi.org/10.1016/j.ijsolstr.2015.02.038
0020-7683/� 2015 Elsevier Ltd. All rights reserved.

E-mail address: hannaj@vt.edu

International Journal of Solids and Structures 62 (2015) 239–247

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2015.02.038&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.038
mailto:hannaj@vt.edu
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.038
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


The first conditions that must hold across a discontinuity are
compatibility of velocities and some body derivatives of position.
A treatment of surfaces generates the equivalents of Hadamard
and Darmois compatibility, which differ from the classic cases
because both the discontinuity and its embedding surface are of
nontrivial codimension with respect to another embedding space,
E3.

Next I consider mass conservation, a topic which is made
considerably easier by the presumption that the bodies are
inextensible and isometric to a sufficiently smooth configuration.
This justifies the use of global material coordinates on the body
which facilitate calculations.

Then I turn to balances of momentum and energy. The balances
are derived from an action with a time-dependent, non-material
boundary, rather than from a set of conservation laws in weak form

as would be traditional in continuum mechanics. For this reason,
the formulation shares some conceptual ground with variable-mass
problems (McIver, 1973), such as axially moving belts between sup-
ports (Wickert and Mote, 1988; Lee and Mote, 1997), yarn or cables
deployed off of spools or onto the seafloor (Mack, 1958; Zajac, 1957;
Padfield, 1958; Mankala and Agrawal, 2005; Krupa et al., 2006),
pipes conveying fluid (Païdoussis and Li, 1993), or other situations
in which one or more boundaries act as sources or sinks of material.

This paper is restricted to metrically constrained inertial
motions in E3, but the method can be generalized to other systems
involving elasticity or plasticity of the body. Aside from the econ-
omy of assumptions inherent to a variational principle, there seem
to be conceptual advantages to viewing a discontinuity as a mov-
ing boundary, rather than an internal ‘‘wave’’. There is the possibil-
ity of treating fracture, as well as combined line and point defects,
by the approach suggested in Section 4. The ability to consider
boundary conditions of action functionals of arbitrarily high
derivatives of position is exploited in Section 6 to derive momen-
tum and energy balances for a discontinuous elastica. Finally, the
present treatment adds a new perspective on the existence of
energy functionals for some axial motions of thin bodies between
supports (Renshaw et al., 1998).

The prior work of McIver (1973) should be mentioned, in which
an action principle was developed for an open system akin to the
time-dependent volumes considered in the present work. The pre-
sent treatment differs primarily in its focus on boundary conditions
and their application to discontinuities, and in its use of global
material body coordinate descriptions of the moving boundaries.

The variations in the current procedure involve only the mate-
rial position vector and the time; it is likely that these could be
viewed as a single four-dimensional material position vector.
This is in contrast to variations of the position of geometric quan-
tities, such as the location of a boundary or other defect. Examples
of the latter may be found in recent treatments of static adhesion
(Deserno et al., 2007; Majidi and Adams, 2009; Majidi et al.,
2012; Hure and Audoly, 2013), and in approaches based on the
concept of configurational balances (Gurtin, 2000; Kienzler and
Herrmann, 2000; Maugin, 2011). The current procedure is more
direct, not requiring any additional compatibility conditions on
the variations. Perhaps more importantly, it does not rely on any
principles beyond the established action of classical mechanics
that applies to the material composing the body; there are no
new postulated laws for geometric objects. However, the approach
is limited to defects that can be described as boundaries, excluding
non-Riemannian objects such as dislocations.

Fig. 1. Real systems with discontinuous, or approximately discontinuous, moving features. Left: A kink moving upward in a tubular Airdancer� (airdancers.com/about/)
membrane (still from a film courtesy R.B. Warner). Center: A propagating impact in an aircraft arresting cable (commons.wikimedia.org/wiki/File:AircraftCarrier3-wire.jpg).
Right: A chain falling onto a table (still from a film courtesy D. Aliaj and R.B. Warner). The table, or the pile of chain on the table, acts as a positive supply of stress
(momentum) and a negative supply of power (energy).

(a)

(b)

Fig. 2. Bodies X with discontinuities, here drawn as first order in derivatives of
position. (a) Tangent vectors at a point discontinuity in a string. (b) Tangent vectors
and Darboux frames at a line discontinuity in a sheet, and coordinate lines and
tangents in the bulk. Details and definitions in text.
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