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a b s t r a c t

A state-based micropolar peridynamic theory for linear elastic solids is proposed. The main motivation is
to introduce additional micro-rotational degrees of freedom to each material point and thus naturally
bring in the physically relevant material length scale parameters into peridynamics. Non-ordinary type
modeling via constitutive correspondence is adopted here to define the micropolar peridynamic material.
Along with a general three dimensional model, homogenized one dimensional Timoshenko type beam
models for both the proposed micropolar and the standard non-polar peridynamic variants are derived.
The efficacy of the proposed models in analyzing continua with length scale effects is established via
numerical simulations of a few beam and plane-stress problems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Classical continuum mechanics assumes a continuous distribu-
tion of matter throughout the body and establishes the equations
of motion considering only the local action. Both long range effects
of loads and those of inter-molecular interactions are ignored in
this theory. Such approximations limit the applicability of the clas-
sical theory to macro-scale phenomena where the characteristic
length scale of the loading is much larger than the intrinsic
material length scales. However, when these length scales are
comparable, the microstructural effects could become significant
and predictions of the classical theory depart considerably from
experimental results. Substantial discrepancies are observed, for
instance, in problems involving high stress gradients at notch
and crack tips, short wavelength dynamic excitations, the behavior
of granular solids, porous materials, modern-day engineering
nano-structures etc. (Eringen, 1976).

In order to circumvent such limitations of the classical con-
tinuum theory of elasticity, an early attempt was made by Voigt
(1887), who postulated the existence of a couple-traction along
with the usual force-traction responsible for the force transfer
across boundaries/interfaces or from one part of the body to anoth-
er. Later Cosserat and Cosserat (1909) developed a mathematical
model based on couple stresses leading to a description of the
stress fields via asymmetric tensors as opposed to the symmetric
Cauchy stress fields in the classical theory. From a kinematical
perspective, this theory enables non-local interactions via the

incorporation of rotational degrees of freedom, along with the
classically employed translational ones, for the material points
and this allows an infinitesimal volume element about a material
point to rotate independently of the translational motion. This
idea, as formalized in the micropolar theory (Eringen, 1999),
assumes the material micro-rotation to be independent of the con-
tinuum macro-rotation (e.g. the curl of the displacement field).
Such a microstructure-motivated description of deformation pro-
vided for the inclusion of length scale parameters in the constitu-
tive equations which were otherwise absent. The development of
a structured generalized continuum theory only took place several
decades later. Among numerous such contributions, we cite
(Eringen and Suhubi, 1964; Nowacki, 1970; Kafadar and Eringen,
1971; Eringen and Kafadar, 1976; Eringen, 1999) and the refer-
ences therein.

Gradient type non-local formulations (Mindlin, 1965; Mindlin
and Eshel, 1968) are yet another approach to a generalized con-
tinuum theory where, in lieu of micro-rotations, several higher
order gradients of the strain tensor are assumed to contribute to
the internal work thereby bringing in the length scale effect. As a
consequence, such formulations introduce different higher order
generalized stresses conjugate to the gradients of strain.

Apart from the limitation related to scale independence, it is
known that the mathematical setup in the classical continuum
mechanics may not be quite appropriate in the context of several
other problems of fundamental interest in solid mechanics, viz.
those including the spontaneous generation of cracks (Silling,
2000). The inability to track and evolve a discontinuous field may
be traced back to the kinematical requirement of a sufficiently
smooth, diffeomorphism-type deformation field appearing in the
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governing partial differential equations (PDEs). Therefore compu-
tational methods for solving such problems using the classical the-
ory either require a redefinition of the object manifold so that
discontinuities lie on the boundary or some special treatment to
define the spatial derivatives of the field variables on a cracked
surface (Bittencourt et al., 1996; Belytschko and Black, 1999;
Areias and Belytschko, 2005).

More recently Silling (2000) introduced a continuum theory, the
peridynamics (PD), which is capable of addressing problems
involving discontinuities and/or long range forces. One of the main
features of this theory is the representation of the equations of
motion through integro-differential equations instead of PDEs. This
relaxes, to a significant extent, the smoothness requirement of the
deformation field and even allows for discontinuities as long as the
Riemann integrability of the spatial integrals is ensured. These
equations are based on a model of internal forces that the material
points exert on each other over finite distances. The initial model,
the bond-based PD, treats the internal forces as a network of inter-
acting pairs like springs. The maximum distance through which a
material particle interacts with its neighbors via spring like inter-
actions is denoted as the horizon. Such pair-wise forces however
lead to an oversimplification of the model and in particular results
in an effective Poisson’s ratio of 1/4 for linear isotropic elastic
materials. This limitation has been overcome through a more gen-
eral model, the state-based PD (Silling et al., 2007). According to
this theory, particles interact via bond forces that are no longer
governed by a central potential independent of the behavior of
other bonds; instead they are determined by the collective defor-
mations of the bonds within the horizon of a material particle. This
version of the PD theory is applicable over the entire permissible
range of Poisson’s ratio. Even though the PD has many attractive
features, the scarcity of strictly PD-based material constitutive
models tends to limit its applicability. This difficulty may however
be bypassed using a constitutive correspondence framework
(Silling et al., 2007), which enables the use of classical material
models in a PD formulation.

In the present work, a novel proposal for a PD approach incor-
porating micropolar elasticity is set forth. A set of state-based
equations of motion is derived for the micropolar continuum and
the constitutive correspondence utilized to define the associated
material model. Incorporation of additional physical information
via the material length-scale parameters has been a primary moti-
vation in the current development. Such an enhancement of the
model is expected to emulate more closely the physical behavior
of structures like nano-beams, nano-sheets, fracture characteristics
of thin films, concrete structures etc. In this context, an earlier
work by Gerstle et al. (2007) on bond-based micropolar PD should
be mentioned, which, whilst eliminating the issue of fixed Pois-
son’s ratio, does not offer a ready framework to incorporate the
rich repertoire of classical material models. The last work also
has additional limitations in imposing the incompressibility con-
straint, often employed in a wide range of models including those
involving plastic deformation in metals (Silling et al., 2007). Along
with a general three dimensional model, a one dimensional micro-
polar PD model for a Timoshenko type beam is also derived in this
work through an appropriate dimensional descent. For the purpose
of comparison, a similar beam model based on the standard non-
polar PD is derived. Effects of the length scale parameters on the
static deformation characteristics of a beam under different bound-
ary conditions are numerically assessed confirming the superiority
of the (new) micropolar model over the non-polar one. A couple of
two dimensional planar problems, first of a plate with a hole and
the other involving a plate with a central crack under tensile load-
ing, also hold out similar observations. The theoretical develop-
ment in this article is, however, limited to linear isotropic elastic
deformations only.

The rest of the paper is organized as follows. Section 2 briefly
describes the state based PD theory and also gives a short account
of linear elastic micropolar theory. While Section 3 reports on a
systematic derivation of a general 3D micropolar PD theory, the
one dimensional adaptations of the theory are laid out in Sections
4 and 5. This is followed by numerical illustrations and a few
concluding remarks in Sections 6 and 7 respectively.

2. State based PD and micropolar elasticity

For completeness, a concise description of the state based PD
theory along with the constitutive correspondence is given in this
section. Equations of motion in the micropolar theory and the
linear elastic material model are also briefly reviewed.

2.1. State based PD

Following the approach in Silling et al. (2007), a brief account of
the state-based PD theory is presented below. PD is a non-local
continuum theory that describes the dynamics of a body occupying
a region B0 � R3 in its reference configuration and B0 � R3 in the
current configuration. A schematic of the body is shown in Fig. 1.
The bond vector n between a material point X 2 B0 and its neighbor
X0 2 B0, defined as n ¼ X0 � X, gets deformed under the deforma-
tion map v : B0 ! Bt . The deformed bond is given by the deforma-
tion vector state Y (refer to Silling et al. (2007) for a precise
definition of states)

Y½X�hni ¼ y0 � y ¼ vðX0Þ � vðXÞ ð1Þ

The family of bonds to be considered for a point X is given by its
horizon H defined as HðXÞ ¼ fn 2 B3jðnþ XÞ 2 B0; jnj < dg, where
d > 0 is the radius of the horizon.

The state based PD equations of motion are of the following
integro-differential form.

qðXÞ€yðX; tÞ ¼
Z
HðXÞ
fT½X; t�hni � T½Xþ n; t�h�nigdVX0 þ bðX; tÞ ð2Þ

where q, T, b are the mass density, long range internal force vector
state and externally applied body force density respectively.
Superimposed dots indicate material derivatives with respect to
time. This equation has been shown in Silling et al. (2007) to satisfy
the linear momentum balance. In the standard non-polar PD theory,
conservation of angular momentum is ensured by imposing the
following restriction on the constitutive relation.Z
HðXÞ

T½X; t�hni � Y½X; t�hnidVX0 ¼ 0; 8X 2 B0 ð3Þ

Silling et al. (2007) have proposed a constitutive correspondence in
order to incorporate the classical material models within the PD

Fig. 1. Schematic PD body in the reference and current configurations.
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