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a b s t r a c t

A mathematical model based on the method of conditional moments combined with a new notion of the
energy-equivalent inhomogeneity is presented and applied in the investigation of the effective properties
of a material with randomly distributed nanoparticles. The surface effect is introduced via Gurtin–
Murdoch equations describing the properties of the matrix/nanoparticle interface. The real system, consist-
ing of the inhomogeneities and their surfaces possessing different properties and, possibly, residual
stresses, is replaced by energy-equivalent inhomogeneities with modified bulk properties which incorpo-
rate the surface effects. The effective stiffness tensor of the material with so defined equivalent inhomo-
geneities is determined by the method of conditional moments. Closed-form expressions for the effective
moduli of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are
derived for both the bulk and the shear moduli. Dependence of those moduli on the radius of nanopar-
ticles is included in these expressions exhibiting analytically the nature of the size-dependence in nano-
materials. As numerical examples, nanoporous aluminum and nanoporous gold are investigated. The
dependence of the normalized bulk and shear moduli of nanoporous aluminum (for two sets of surface
properties) on the pore volume fraction (for different radii of nanopores) and on the radius of nanopores
(for fixed volume fraction of nanopores) are compared to and discussed in the context of other theoretical
predictions. Further, the normalized effective Young’s modulus of nanoporous gold as a function of void
volume fraction for various ligament radii is analyzed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of this work is to investigate effective properties
of composites with nanometer-scale randomly dispersed spherical
inhomogeneities. They belong to a wider class of materials which,
for example, may contain randomly distributed pores, inclusions,
cracks, etc. of various sizes, shapes and orientations. Some of those
materials are increasingly of interest in modern technological
applications, and that often includes composites with randomly
distributed spherical nanoparticles (Kickelbick, 2007; Ma and
Kim, 2011; Wang and Weissmüller, 2013; Sarac et al., 2014).

It is commonly known that the conditions at the interface
between the matrix and the inhomogeneities impact the overall
properties of the composite. A thin layer along the interface
between two dissimilar materials typically possesses properties
which are different than those of the constituent materials on

either side of it (Ma and Kim, 2011; Tserpes and Silvester, 2014).
A significant residual interface stresses or interface cracks may
be present as well (see, e.g., Gan, 2009). The influence of those
interface features on the composite’s overall properties depends
on their kind and their intensities (or magnitude), as well as on
some characteristics of the composite itself. Depending on the
specific circumstances, they may decrease or increase the stiffness
of the composite and appropriate interface models need to be used
to capture those effects. If interfacial cracks are present, for exam-
ple, the composite’s overall properties may decrease appreciably –
even if the inhomogeneities are well above the nanometer scale
(Kim and Mai, 1998). On the other hand, changed material proper-
ties in a thin layer along the interface, or the residual interface
stresses, have been found to meaningfully affect the overall mate-
rial properties only if the size of the inhomogeneities is in the
range of nanometers (see Buryachenko et al., 2005; He and Li,
2006; Lim et al., 2006; Wang and Weissmüller, 2013; Yang,
2004). The quantification of the effects which the changed
interface properties have on the overall behavior of random
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nanocomposites is undertaken in this work. The interface model
adopted here is that of Gurtin and Murdoch (1975, 1978), whereby
the interface is treated as vanishingly thin layer with its own elas-
tic properties (and, possibly, surface tension) coherently connected
to the materials on either side. Although not valid universally, this
model is adequate for many materials of practical interest and in
recent years has been used quite extensively. Several authors mod-
ified the known deterministic micromechanical models and, using
Gurtin and Murdoch’s theory, introduced the surface elasticity
and/or surface tension in analysis of random materials on the
nanometer scale (see McBride et al., 2011, 2012; Javili et al.,
2013 among others).

There are many prior publications addressing the same prob-
lem. Those most relevant to the ideas presented in this work are
reviewed subsequently. It is important to underscore that this
work differs in that the random nature of the analyzed composite
is matched by the stochastic nature of the approach used to inves-
tigate it. Specifically, the stochastic method of conditional
moments (MCM), developed earlier to analyze composites without
the interface effects (Khoroshun, 1978; Khoroshun et al., 1990,
1992, 1993; Nazarenko et al., 2009), is extended here to include
such effects. In fact, the present authors have used a preliminary
extension in a previous work of theirs, Nazarenko et al. (2014),
but the approach pursued there is too complex to obtain a com-
plete characterization of the composite, but can rather be used to
obtain the bulk modulus of the material. In the current work, the
MCM is amended in a different way so as to account for the chan-
ged interface properties and obtain all properties of the composite.
The idea is to, at a specific stage of the development, treat the inho-
mogeneities and their surfaces with different material properties
as one energetic system and replace it by uniform, energy-
equivalent inclusions. A similar approach was used in Chen et al.
(2007) and Brisard et al. (2010), where the influence of surface
stresses on the composite‘s effective properties are considered as
a correction to the properties of the inclusions. Although not
explicitly stated in their work (and, possibly, not intended), in fact,
the approach of Duan et al. (2005) is also similar in the sense that
the surface effects (as shown subsequently for bulk moduli in Sec-
tion 4) appear only as a modification of the properties of inhomo-
geneities. As in the case of the previous results obtained using the
MCM, closed-form formulas describing the effective properties are
obtained also in this work.

The body of literature addressing the issue of surface effects in
nanocomposites is growing at an increasing rate. The picture
gleaned from the literature shows that virtually all of the existing
publications employ deterministic techniques, even if analyzing
composites with random microstructure. Two basic groups of tech-
niques employed for this purpose can be identified. One is based on
various forms of the self-consistent method (Willis, 1977), in
which a deterministic solution for a single inclusion embedded in
a homogeneous medium (Eshelby, 1957) is the main ingredient
of the techniques, (see Chen et al., 2007; Duan et al., 2005;
Sharma and Ganti, 2004, among others). The techniques belonging
to the other group invariably employ some kind of computational
approach to find elastic fields in the (randomly generated) repeat-
ing unit cell, the so-called representative cluster (Mogilevskaya
et al., 2010a,b) or in a randomly generated representative volume
element (see, e.g., Kushch et al., 2013), which are then post-pro-
cessed in various ways to obtain the effective properties of the
composite of interest (Kim and Mai, 1998; Kanit et al., 2003 among
others). Such analysis is computationally very demanding, par-
ticularly in the case of realistic three-dimensional problems. In
contrast, the statistical approach proposed herein is analytical
and leads to the closed-form expressions defining the material’s
effective properties.

As mentioned earlier, this work is second in the sequence
employing the method of conditional moments, a purely statistical
approach, in analysis of surface effects in random nano-compos-
ites. The details of this work are arranged in the following order:
To have a self-contained exposition of the material in the next Sec-
tion some known aspects of the problem are reviewed: the govern-
ing equations of elasticity are cast in the form convenient for
subsequent use in the context of the MCM, Gurtin–Murdoch
description of the interface is inserted, and reference is made to
the authors’ previous results on the subject to justify the present
approach. The idea of an energy-equivalent inhomogeneity is dis-
cussed in Section 3. It starts with the arguments after selection
of the reference medium in the MCM, which is one of the critical
aspects of the approach based on the notion of equivalent inhomo-
geneity. The description of equivalent inhomogeneity itself, which
is the other critical aspect, is included at the end of Section 3. The
development of the scalar and tensorial formulas for the effective
properties resulting from the proposed approach is presented in
Section 4. Sections 5 and 6 are dedicated to the discussion of the
numerical results and to general comments on the proposed
approach, respectively.

2. Problem statement

2.1. Governing equations

Consider a representative macro-volume V consisting of a
matrix containing distributed nanoinhomogeneities. Then, the
(properly evaluated) averaged macroscopic stresses �r and strains
�e are related as follows

�r ¼ C� : �e; ð2:1Þ

where C⁄ is the effective stiffness tensor. The objective of
homogenization processes is to examine the effects of the proper-
ties of constituents, volume fraction, size, shape, orientation, and
distribution of nanoinhomogeneities, as well as the effects of sur-
face stresses, on the overall behavior of the composite, and to deter-
mine the effective stiffness tensor C⁄ as a function of those
properties. This is also the goal in this work, but an important
new aspect of it is that the nanoinhomogeneities are distributed
randomly, as illustrated in Fig. 1. Given that such random materials
may have (infinitely) many different realizations, the ‘‘proper’’
evaluation of �r and �e becomes a critical issue. In this regard, a very
useful observation is that, under homogeneous loading, the stresses
and strains in the representative volume constitute statistically
homogeneous random fields satisfying the ergodicity condition. In
probability theory it is proven that, under the condition of ergod-
icity, averaging over a representative volume (needed in Eq. (2.1))
and averaging over an ensemble of realizations (i.e., statistical aver-
aging) lead to the same results (e.g., Gray, 2009; Gnedenko, 1962).
Statistical averaging, which automatically takes into account the
randomness of the material, is subsequently used in this work.

For any realization of linear elastic materials the problem of
finding the effective stiffness tensor outlined in the previous para-
graph requires the solution of the following set of equations

� Equations of equilibrium:

div rðxÞ ¼ 0; ð2:2Þ

� Hooke’s law:

rðxÞ ¼ CðxÞ : eðxÞ; ð2:3Þ

� Linear kinematic relation:

eðxÞ ¼ sym ðruðxÞÞ; ð2:4Þ
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