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a b s t r a c t

Material properties of soft fibrous tissues are highly conditioned by the hierarchical structure of this kind
of composites. Collagen based tissues present, at decreasing length scales, a complex framework of fibres,
fibrils, tropocollagen molecules and amino-acids. Understanding the mechanical behaviour at nano-scale
level is critical to accurately incorporate this structural information in phenomenological damage mod-
els. In this work we derive a relationship between the mechanical and geometrical properties of the fibril
constituents and the soft tissue material parameters at macroscopic scale. A Hodge–Petruska two-dimen-
sional model has been used to describe the fibrils as staggered arrays of tropocollagen molecules. After a
mechanical characterisation of each of the fibril components, two fibril failures modes have been defined
related with two planes of weakness. A phenomenological continuous damage model with regularised
softening was presented along with meso-structurally based definitions for its material parameters.
Finally, numerical analysis at fibril, fibre and tissue levels are presented to show the capabilities of the
model.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Soft tissues have a hierarchical structure with several scales,
from the amino-acids forming the proteins in the atomistic scale
to the arterial walls in the continuum scale. The elementary build-
ing block of the fibrous reinforcement in soft tissues is collagen.
This structural protein consists of tropocollagen (TC) molecules
with an aspect ratio close to 200. TC molecules are disposed in
staggered arrays forming fibrils which are organised in families
of fibres surrounded by an almost incompressible ground matrix
(see Baer et al., 1991; Sasaki and Odajima, 1996; Buehler, 2008;
Gautieri et al., 2011 among others).

Degradation phenomena in soft tissues have been successfully
reproduced through phenomenological damage models (see
Balzani et al., 2006; Calvo et al., 2007; Ehret and Itskov, 2009;
Peña et al., 2010 among others) although some plasticity-based
models have also been presented (see Tanaka and Yamada, 1990;
Gasser and Holzapfel, 2002; Itskov and Aksel, 2004). The capabili-
ties and accuracy of these phenomenological models for soft tis-
sues have been improving in the past years. However, less effort
has been paid to develop continuum models based on the underly-
ing fracture mechanisms at molecular scale.

The structural mechanisms that control the degradation of soft
tissues are related with the behaviour of their fundamental constit-
uents. The study of the relationship between the molecular and
intermolecular properties and the tissue behaviour is been actively
addressed at present (Buehler, 2006b, 2008; Shoulders and Raines,
2009; Gautieri et al., 2011; Shen et al., 2011 among others). As a
consequence, several damage models for soft tissues have been
presented derived from the molecular features associated with
the tropocollagen molecules. A stochastic, structurally based dam-
age model that considers statistical aspects related to the length
distribution of the reinforcing fibres was presented in Rodríguez
et al. (2006). A reactive mesoscopic model was presented in
Buehler (2008), where tropocollagen molecules are described as a
collection of particles interacting according to multibody poten-
tials (see also Buehler, 2006a). Based on these molecular simula-
tions, a multiscale, plasticity based, constitutive model was
presented in Tang et al. (2010). Another plasticity based model
has been presented in Gasser (2011), where viscoplastic sliding
of collagen fibrils is associated with the irreversible degradation
of the proteoglycan bridges between them. This model has been
applied to the study of the properties of the infrarenal aorta in
Martufi and Gasser (2011) and has been enriched with a collagen
turnover model in Martufi and Gasser (2012).

In this work we consider the soft tissue as a fibre reinforced
composite and the fibre as a fibril reinforced composite. We want
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to physically motivate the irreversible deformation of soft tissues
beyond the physiological range of loading. The goal is to explain
the damage mechanisms in the fibres using the evolution of their
inner structure. In order to do so we assume, as a hypothesis, that
inelastic phenomena in the fibre are caused only by degradation
processes in the fibrils (Tang et al., 2010). Firstly, we characterise
the geometrical and mechanical properties of the fibre components
at molecular scale, i.e. the tropocollagen molecules in the fibril and
the cohesive forces between them. Afterwards, we identify the
onset of damage with the development of planes of weakness
along the unions between TC molecules. We obtain the macro-
scale parameters of the fibre from the mesoscale level by numeri-
cal homogenisation. In order to pass hierarchically the parameters
we have to estimate volume fractions of the fibril within the fibre
and of the fibre within the tissue. We have characterised the fol-
lowing macroscopic material parameters of the fibre: the yield
strength, the total dissipation energy and the initial size of the elas-
tic domain (that depends on the stored elastic energy density at
the onset of damage). Finally we use these structure-derived mate-
rial parameters to fully characterise a continuum damage model
for the fibres. The parameters of this continuum damage model
are thus based on the mesoscopic mechanisms within the fibre
when irreversible processes take place.

The paper is organised as follows. In Section 2 the methods used
in this work are presented: a local damage model for fibrous mate-
rials with regularised softening and a mesoscopic-based structural
characterisation of the inelastic behaviour of the fibres. Several
numerical simulations are included in Section 3, where we perform
mechanical analysis at fibril, fibre and tissue levels (all the hierar-
chical scales we have considered). Finally Section 4 includes the
main conclusions of the work.

2. Methods

2.1. A local damage model with regularised softening

We present a material damage model suited for fibrous materi-
als. As stated in Peña et al. (2009), this kind of continuous damage
models can reproduce the Mullins’ effect only after damage initia-
tion. Two main hypothesis have been considered: the damage pro-
cesses depend only on the isochoric deformation and each material
phase, ground matrix and fibres, damages independently. The
model presented here needs only three parameters to characterise
the material softening in each phase of the composite: a threshold
value that defines the initial size of the elastic domain (usually a
limit value of the Cauchy stress or the stretch in the uniaxial homo-
geneous tension test), a parameter that defines the total amount of
internal dissipated energy and a coefficient that affects the rate of
softening.

2.1.1. Kinematics
Let B0 be the reference configuration of the body of interest and

Bt its current configuration. The mapping uðX; tÞ : B0 � Rþ ! Bt

defines the motion that transforms, at time t, position vectors of
the material points X 2 B0 into spatial position vectors
x ¼ uðX; tÞ 2 Bt . The deformation gradient is defined as
FðX; tÞ ¼ @uðX; tÞ=@X, which is multiplicatively decomposed into
dilatational and distortional (isochoric) parts (Flory, 1961):

F ¼ J1=3F; F ¼ J�1=3F: ð1Þ
Eq. (1) allows to obtain the right and left Cauchy–Green deforma-
tion tensors, C and b, and their corresponding isochoric
counterparts:

C ¼ FTF ¼ J�2=3FTF ¼ J�2=3C; ð2Þ
b ¼ F FT ¼ J�2=3F FT ¼ J�2=3b: ð3Þ

If we consider nf families of fibres, the direction of each family
at point X 2 B0 is defined by the unit vector a0i, with i ¼ f1;nfg.
The description of these vectors in the current configuration is:

ai ¼ F a0i; �ai ¼ F a0i; ka0ik ¼ 1; ð4Þ

where the macroscopic stretches in the direction of the family of
fibres i are defined by ki ¼ kaik > 0 and �ki ¼ k�aik > 0. This structure
is characterised by a set of generalised structure symmetric tensors
(Holzapfel et al., 2000) expressed as:

Hi ¼ a0i � a0i; i ¼ f1;nfibresg: ð5Þ

We assume henceforth our domain of interest has a quasi-
incompressible constitutive behaviour and that there are only
two families of fibres. The definition of the standard invariants
(Spencer, 1971) associated with the distortional deformation

I1 ¼ tr C
� �

¼ tr b
� �

¼ J�2=3I1; ð6Þ

I2 ¼
1
2

tr C
� �2

� tr C
2

� �� �
¼ 1

2
tr b
� �2

� tr b
2� �� �
¼ J�4=3I2; ð7Þ

I3 ¼ det C ¼ det b ¼ 1; ð8Þ

J ¼ ðdet CÞ1=2 ¼ ðdet bÞ
1=2
; ð9Þ

I4 ¼ C : H1 ¼ C : ða01 � a01Þ; ð10Þ
I6 ¼ C : H2 ¼ C : ða02 � a02Þ ð11Þ

allows us to define the following Green–Lagrange strain-like
quantities:

E1 ¼ C : H1 � 1 ¼ I4 � 1; ð12Þ

E2 ¼ C : H2 � 1 ¼ I6 � 1; ð13Þ

which characterise the strain in the direction of the mean orienta-
tions a01 and a02 (Gasser et al., 2006).

2.1.2. Strain energy function and stress response
Based on the kinematic description of Eq. (1), the strain energy

density function can be defined in a decoupled form with a dilata-
tional and an isochoric part. The isochoric contribution can also be
decomposed into a part associated with the isotropic behaviour of
the ground matrix and a part associated with the anisotropic
behaviour of the fibres as:

W¼UðJÞþð1�dgÞWgðCÞþð1�df 1ÞWf 1ðC;H1Þþð1�df 2ÞWf 2ðC;H2Þ;
ð14Þ

where Wg ; Wf 1 and Wf 2 represent, respectively, the effective strain
energy functions of the hypothetical undamaged materials matrix
and fibres. These functions must obey the principle of objectivity
and material frame indifference (Holzapfel and Ogden, 2010).
Reduction factors ð1� dgÞ, ð1� df 1Þ and ð1� df 2Þ, initially proposed
in Kachanov (1958), incorporate the inelastic degradation phenom-
ena taking place separately in the matrix and in each family of
fibres, satisfying 0 6 da 6 1 for a ¼ fg; f 1; f 2g.

Eq. (14) can be expressed in terms of the strain invariants
defined in Eqs. (6)–(11) as:

W ¼UðJÞþð1�dgÞWgðI1; I2Þþð1�df 1ÞWf 1ðI1; I4Þþð1�df 2ÞWf 2ðI1; I6Þ:
ð15Þ

We use the neo-Hookean strain energy function to reproduce the
behaviour of the ground matrix and the function proposed in the
Holzapfel–Gasser–Ogden model (Holzapfel et al., 2000) to repro-
duce the behaviour of each family of fibres. Eq. (15) is thus partic-
ularised as:
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