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size effect resulting from plastic strain gradients. A method of solving boundary value problems at finite
strains is also presented. The efficiency of the new theory is demonstrated through two typical numerical
examples: a constrained simple shear problem in which an infinitely long strip bounded by two hard
materials is subjected to large shear under plane strain conditions, and a problem of shear band forma-
tion in plane strain tension.
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1. Introduction

Whether or not a vertex (or a corner) develops on the yield sur-
face of a plasticity material is a very important inquiry in predic-
tions of plastic instability that accompanies an abrupt change in
the deformation mode without a large variation in the stress state
(Steren and Rice, 1975; Hutchinson and Tvergaard, 1981). Plastic-
ity theories accounting for the effects of a yield surface corner have
been proposed by Christoffersen and Hutchinson (1979) and Gotoh
(1985). Later, for the purpose of developing simplified and efficient
numerical procedures, Hughes and Shakib (1986) proposed a
pseudo-corner theory representing the reduced stiffness and
increased plastic flow of the corner-theory-like response to non-
proportional loading. Simo (1987) proposed a non-associative flow
rule that represents a corner-like effect on an apparently smooth
yield surface.

An experimental investigation on the use of an abrupt strain
path change to determine the shape of a subsequent yield surface
in the vicinity of a current loading point was carried out by
Kuwabara et al. (2000), which was based on a method proposed
by Kuroda and Tvergaard (1999). The recorded trajectory of stress
immediately after a strain path change, which inevitably travels
close to the current yield surface, strongly indicated the existence
of a yield surface vertex at the loading point. Furthermore, the
direction of the plastic strain rate was clearly inclined toward the
forward direction of the stress path that is regarded as part of
the section of the current yield surface. That is, a large deviation
of the plastic strain rate direction from the normal to the apparent
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yield surface was observed. This is interpreted to mean that when
the stress point moves along what appears to be a smooth yield
surface, a vertex moves with the stress point, which explains the
apparent nonnormality. These experimental observations are sim-
ilar to the numerical predictions obtained using the Taylor poly-
crystal model (Kuroda and Tvergaard, 1999). The observed
apparent nonnormality effect on a smooth yield surface is consis-
tent with the basic idea of Simo’s corner-like plasticity model
(Simo, 1987). Kuroda and Tvergaard (2001a) modified Simo’s
model so that it can represent observations in the polycrystal
model (Kuroda and Tvergaard, 1999) and the experiments of
Kuwabara et al. (2000) as closely as possible at a macroscopic level
of modeling. The modified model of Kuroda and Tvergaard (2001a)
was applied to finite element analysis to predict the shear band
development in plane strain tensile specimens, and it was con-
firmed that the results were reasonably close to crystal plasticity
predictions (Kuroda and Tvergaard, 2001c).

Conventional plasticity theories including the aforementioned
classes of corner theories do not account for any size effect in real
material behavior. A wide array of experiments on micron-size
specimens have revealed significant size-dependent mechanical
behaviors in plastically strained materials involving spatial gradi-
ents of strain (e.g., Fleck et al.,, 1994; Stolken and Evans, 1998).
On the theoretical side, a considerable number of studies have
been conducted with the aim of incorporating the strain gradient
effects into theories of plasticity since the pioneering studies of
Aifantis (1984, 1987). Part of them were carried out within a con-
text of the crystal plasticity framework (e.g., Gurtin, 2002; Evers
et al., 2004; Kuroda and Tvergaard, 2006; Borg, 2007). However,
in parallel, extensions of phenomenological plasticity theories
(in most cases, J,-based theories) have attracted considerable
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attention owing to their simplicity and practical efficiency (e.g.,
Fleck et al.,, 1994; Fleck and Hutchinson, 2001; Gudmundson,
2004; Gurtin and Anand, 2009; Hutchinson, 2012). The former
approach is advantageous for performing physically based simula-
tions directly accounting for the effects of the geometrically neces-
sary dislocations (GNDs), which correspond to gradients of
crystallographic slips (Ashby, 1970). The latter approach is suitable
in cases where one intends to model a resultant size effect in poly-
crystalline materials or introduce an assumption of isotropy, as a
first approximation, for micron-scale plasticity. It is now widely
recognized that these gradient plasticity theories must be higher-
order in the sense that it should be possible to impose extra bound-
ary conditions with respect to plastic strains or their gradients,
which are outside the scope of conventional plasticity theories.

In the present study, the corner-like plasticity model of Kuroda
and Tvergaard (2001a), whose original version was proposed by
Simo (1987), is extended to include a size effect resulting from
plastic strain gradients (Aifantis, 1984, 1987). Then, a method of
solving boundary value problems at finite strains using the pro-
posed constitutive model is presented. Two typical examples are
shown to demonstrate the efficiency of the new theory: one is a
constrained simple shear problem in which an infinitely long strip
bounded by two hard materials is subjected to large shear under
plane strain conditions, and the other is a problem of shear band
formation in plane strain tension.

2. Theory and solution method
2.1. Constitutive modeling

Let x be the current position of a particle labeled X in the unde-
formed configuration of the body under consideration, F = 9x/0X
be the deformation gradient, L=F-F ! = 9X/ox = 0u/x =u® V
be the velocity gradient (where u is the displacement, a super-
posed dot denotes a material-time derivative, V is the spatial gra-
dient operator with respect to the current configuration, and ® is
the tensor product operator), D =1 (L + L") be the deformation rate
tensor, and W =1 (L — L") be the continuum spin tensor. An addi-
tive decomposition of the deformation rate tensor into elastic
and plastic parts is postulated as D® = D — DP. The elastic response
is assumed to be given by the following hypoelasticity relation

6=6-W-6+6-W=C:D° (1)
with
C=11+2u", (2)

where ¢ is the Cauchy (true) stress, o is its Jaumann rate, C is a
fourth-order elastic moduli tensor, 4 and p are Lamé constants, 1
is the second-order identity tensor, and I is the fourth-order
symmetric identity tensor. For plastic deformation, the following
form of the flow rule is adopted:

DP = ¢NP, 3)

where ¢ is a scalar plastic multiplier and the tensor NP represents
the direction of DP, which will be defined later.

A gradient-dependent yield condition is introduced, following
Aifantis (1984), as

f=0e+V g -R) =0 4

for a plastic loading condition, and f < O for elastic states (i.e. before
initial yielding or in an unloaded state), where

3 1
o=\ @—a-te o), )

& - pve ®)

R(&P) is a function of the equivalent plastic strain &°, which repre-
sents a work-hardened state of the material, § is a length scale coef-
ficient assumed to be constant in the present study, a prime, (s),
denotes the deviatoric part of the tensor (e), and

(o) = y/tr{()" - (o)].

The introduction of the gradient term into yield conditions was
mainly motivated by the desire to predict the postlocalization fea-
tures of material behavior. The inclusion of the gradient term is
necessary to determine the shear band width in the post-bifurca-
tion regime as first discussed by Aifantis (1984, 1987). Although
more complicated or generalized strain gradient formulations have
been proposed by different researchers (e.g., Fleck and Hutchinson,
2001; Gudmundson, 2004), Eq. (4) is used here as the first choice.
Eq. (4) is the simplest, but involves the primary effect of the plastic
strain gradients. A physical basis for the introduction of
V - gP(= pV2¢P for a constant f) can be strengthened by an argu-
ment based on the dislocation theory, as discussed by Kuroda
and Tvergaard (2006, 2010). That is, a dislocation-induced long-
range internal stress arises in response to spatial gradients of the
GND density (Groma et al., 2003; Evers et al., 2004), and the
GND density is equated with the spatial gradient of crystallo-
graphic slip (Ashby, 1970). Thus, the dislocation-induced internal
stresses correspond to the second gradients of crystallographic
slips. The macroscopic yield condition with the term gVZeP is
mathematically similar to microscopic yield conditions for each
slip system in the gradient crystal plasticity theories (Groma
et al., 2003; Evers et al., 2004). Based on this view, we can identify
the term fV2¢P with a resultant of the GND density-induced inter-
nal stress. On this understanding, plastic dissipation should be
accounted for by RéP(> 0) as pointed out by Kuroda and
Tvergaard (2010).

The direction tensor NP in Eq. (3) is taken to be

N’ =n+om (7)
with

/ D'~ (n:D)n
no Ao O (8)
= [of/oe] "le|” = D'~ (n:D)n|

The framework of this flow rule with a corner-like effect was orig-
inally proposed by Simo (1987). In the original model, 5 was formu-
lated so that DP is always coaxial to D’ when D' lies inside a hyper-
cone defined by semi-angle ®F, (measured from the direction n; D?
must lie within the hypercone). Later, Kuroda and Tvergaard
(2001a) modified the relation for § to

a® for a® <O

crit
9
@, for a®>06F,’ ®)

crit

5 = tan @P; ®p_{

n:D' R(Sp) -1
1|~
® = cos {D’} a (c m +1) , (10)
where c is a coefficient that introduces non-coaxiality between the
total deviatoric strain rate D’ and the plastic strain rate DP. A sche-
matic diagram of the present corner-like model is shown in Fig. 1.
The introduction of non-coaxiality between D' and DP is a necessity
to reproduce the corner effect observed in crystal plasticity. Kuroda
and Tvergaard (2001a) suggested that a range of ¢ from 3 to 10
might be realistic through identification using Taylor model compu-
tations involving an abrupt strain path change. In a subsequent
study on shear band simulations (Kuroda and Tvergaard, 2001c),
it was found that a slightly smaller value, c = 2, was most suitable
for reproducing the shear band development behavior predicted
in crystal plasticity simulations. The present corner-like model
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