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a b s t r a c t

The notion of embedded homogeneity of thin-walled structures is introduced as the property character-
izing the provenance of such a structure from a homogeneous material. This property needs to be
distinguished from other definitions of homogeneity formulated exclusively in terms of a purely struc-
tural constitutive equation. Necessary conditions for embedded homogeneity are derived for planar
beams and their geometric interpretation is expressed as the condition for the elastic hodograph to lie
on a hypersphere containing the origin of a six-dimensional space of tensors.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An elastic material body is said to be materially uniform if all its
points are made of the same material. A materially uniform body is
(globally) homogeneous if it can be brought to a configuration in
which, when expressed in a system of Cartesian coordinates, the
constitutive equation is independent of position. The precise math-
ematical statement of these conditions is well established within
the general framework of Continuum Mechanics, most particularly
in Noll (1967), Wang (1967). On the other hand, the notions of
material uniformity and homogeneity of thin-walled structures
(beams and shells) are less definitely understood due to the inter-
twining between the material properties and the geometry of the
body. This interesting interplay has been approached from various
points of view by different authors (e.g., Wang, 1972; Cohen and
Epstein, 1983; Naghdi and Rubin, 1995; Epstein and de León,
1998). As befits a structural theory, the question of homogeneity
is framed within the context of certain properties of the structural
constitutive equations. Thus, the constitutive equation of a plane
beam is expressed, say, in terms of a strain energy that depends
on the axial elongation and the change of curvature of the beam
axis. A legitimate question that can be asked, however, is whether
the beam as a bona fide three dimensional material body is homoge-
neous. More dramatically, one may ask whether a material
scientist looking at a small piece of material extracted from a beam
can recognize anything but a piece of material and, moreover,
whether this material element contains distributed dislocations.

This way of formulating the question of homogeneity of a thin-
walled structure has led us to define the notion of embedded
homogeneity. We say that a thin-walled structure enjoys this prop-
erty if it can be conceived as having been cut from a homogeneous
material block. When this is the case, it is clear that the derived
constitutive equation of the thin-walled structure can be obtained
by a process of integration over the thickness of the structural ele-
ment via certain kinematic assumptions (such as the preservation
of the normal to the middle surface of a shell). What interests us
here is the inverse problem, namely, given a constitutive equation
of a thin-walled structure, can it be so derived from an extension to
an ordinary material body? In a previous article, Epstein and
Roychowdhury (2014), we have tackled this question within the
limited framework of a linearized elasticity theory. The results
were expressed analytically and then interpreted geometrically
in an unexpectedly elegant way. In the present work we show,
by a different approach, that the conditions of embedded homoge-
neity derived in Epstein and Roychowdhury (2014) are valid also as
necessary conditions in the nonlinear elastic range. The presenta-
tion in this paper is self-contained and, somewhat paradoxically,
less involved than that in Epstein and Roychowdhury (2014).

2. Intuitive considerations

Let the homogeneity of a two-dimensional body be, naively per-
haps, identified with the existence of a stress-free configuration in
which the ‘‘atoms’’ are arranged in a perfectly regular orthogonal
lattice (Fig. 1) within a material block. If a curved strip were to
be carved out of this block, the result would be, again, a homoge-
neous body with the geometric appearance of what we habitually
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call a beam. While there is no doubt that, as a two-dimensional
entity, this body is homogeneous, we ask the question: Is this a
homogeneous beam? Clearly, if, for example, the original block is
made of an orthotropic elastic material, the axial and bending stiff-
ness of this beam will vary from point to point!.

In light of this trivial observation, we might want to reserve the
term ‘homogeneous’ for, say, a circular beam made of an orthotro-
pic material but with the atoms arranged regularly in a polar
coordinate system as shown in Fig. 2. The stiffness properties of
this beam are now clearly independent of position along the axis.
But cut a small cube (still made of millions of atoms) and give it
to a material scientist. This piece of material contains distributed
dislocations (arrived at, perhaps, through a process of plasticity).
We thus obtain a ‘homogeneous’ beam that is made of an inhomo-
geneous material. To avoid any ambiguities, we shall henceforth
say that a beam enjoys the property of ‘embedded homogeneity’
if it is made of an actually homogeneous material, that is, if it
can be conceived as having been carved out of a homogeneous
material block. The problem of interest in this article consists of
establishing necessary criteria for an elastic beam structure to
enjoy the property of embedded homogeneity.

3. Statement of the problem

If a thin curved strip is cut from a homogeneous, possibly aniso-
tropic, simple elastic plane sheet of stress-free material, the piece
extracted is a stress-free plane elastic beam. Given its provenance,
we would like to affirm that this beam is, in some sense, also
homogeneous, just as the parent sheet. Let, however, the constitu-
tive law of the sheet be given in terms of an elastic energy w per
unit area

w ¼ wðCÞ: ð1Þ

In this equation, C represents the right Cauchy-Green tensor, whose
components in a fixed referential Cartesian coordinate system
ðX1;X2Þ we denote by

½C� ¼
C11 C12

C21 C22

� �
¼

a b

b c

� �
ð2Þ

Notice in Eq. (1) the conspicuous absence of an explicit dependence
on position, in a manner consistent with the assumed homogeneity
of the material in the stress-free reference configuration. With some
abuse of notation, we may replace the constitutive law (1) by

w ¼ wða; b; cÞ; ð3Þ

with the tacit understanding that we are working in a fixed coordi-
nate system.

From the point of view of a theory of beams, such as the
Bernoulli model that we assume adopted from now on, the consti-
tutive equation of the beam can be obtained by restricting the pos-
sible deformations to those that keep the originally normal cross
sections always undistorted and perpendicular to the current con-
figuration of the beam axis. Let s and z be referential coordinates

measuring, respectively, length along the beam axis and position
measured on the normal. In this orthogonal curvilinear coordinate
system the element of area is expressed as

dA ¼ ð1þ jzÞ ds dz; ð4Þ

where j ¼ jðsÞ is the curvature of the line z ¼ 0, namely, the refer-
ential beam axis. Having chosen positive unit directions t for s and n
for z, the (signed) curvature is obtained as

j ¼ dn
ds
� t: ð5Þ

Let the slope-angle at the material point s along the beam axis be
denoted by h ¼ hðsÞ. The right Cauchy-Green tensor field throughout
the beam is given by

Cðs; zÞ ¼ RKRT ; ð6Þ

where, in terms of components in the referential coordinate system,
we have

R ¼
cos h � sin h

sin h cos h

� �
ð7Þ

and

K ¼
k 0
0 1

� �
: ð8Þ

The entry k ¼ kðs; zÞ > 0 in this matrix represents the axial measure
of deformation, namely, the square of the stretch ratio. The depen-
dence of k on z is given by the formula

kðs; zÞ ¼ k0ðsÞ 1þ cz
1þ jz

� �2

¼ k0ðsÞHðj; c; zÞ; ð9Þ

where c ¼ cðsÞ is the curvature change due to the deformation, and
where k0ðsÞ ¼ kðs;0Þ. Combining all the above results, we obtain the
elastic energy per unit referential length of the axis as

/ðk0;c;sÞ¼
Z h=2

�h=2
w

k0Hcos2 hþsin2 h ðk0H�1Þcoshsinh

ðk0H�1Þcoshsinh k0Hsin2 hþcos2 h

" # !
ð1þjzÞdz;

ð10Þ

where h is the (constant) thickness of the beam, assumed to be
bisected by the beam axis.

In short, by a process of integration of the constitutive law of
the original material of the sheet, it is possible to derive rigorously
the elastic constitutive equation of the beam, in terms of the axial
stretch ratio and the curvature change, as some function

/ ¼ /ðk0; c; sÞ: ð11Þ

Notice that, in general, the resulting expression will contain an
explicit dependence on the coordinate s. This dependence originates
from the anisotropy of the material, as captured in the known slope
angle h ¼ hðsÞ, as well as from the known referential curvature jðsÞ
of the beam.

Assume, instead, that the constitutive equation of a beam is
given as the point of departure, namely, a smooth energy densityFig. 1. A beam carved out of a homogeneous block.

Fig. 2. A beam of constant stiffness.
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