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a b s t r a c t

The dispersion relation associated with a symmetric three layer structure, composed of compressible,
pre-stressed elastic layers, is derived. This mathematically elaborate transcendental equation gives phase
speed as an implicit function of wave number. Numerical solutions are established to show a wide range
of dispersion behaviour which is delicately dependent on the material parameters and pre-stress in each
layer. Particularly interesting behaviour is observed within the short wave (high wave number) regime,
with six possible cases of short wave liming behaviour shown possible. Within each of these, a short wave
asymptotic analysis is carried out, resulting in a set of approximations which provide explicit relation-
ships between phase speed and wave number. It is envisaged that these approximations may prove
helpful to approximate numerical truncation errors associated with impact response, as well as providing
excellent first approximations for particularly (numerically) challenging sets of material parameters.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many modern technological applications exist in which layered
elastic material components are employed. Amongst the most
common, we cite the use of layered composites within the aero-
space industry and rubber-like vibration control devices used for
earthquake protection in bridges and tall buildings. There are also
examples of naturally occurring layered structures in geo and bio-
mechanics. With these and other applications in mind, a significant
research effort has in recent times been focussed on elucidation of
the dynamic properties of layered elastic media. As the complexity
of application has increased, considerable effort has been put into a
complete understanding of dispersion in layered media. Seemingly
the first attempt to consider non-fundamental modes was made in
Lamb (1917) for a plane section of an isotropic plate. A more
complete study of higher modes of an isotropic plate was later
presented in Mindlin (1960). Because of the very complicated
structure of the underlying dispersion relations, most of the results
in these early papers were obtained through use of numerical
computations.

In this present contribution, we aim to add to current under-
standing by investigating wave propagation in a symmetric 3-layer
laminate, with each layer composed of compressible, pre-stressed
elastic material. The paper will specifically focus on symmetric
(extensional-type) waves and as such generalise the constitutive
framework of a study done some years ago for incompressible
pre-stressed elastic layers, see Rogerson and Sandiford (2000).
Within this present paper a thorough investigation of the
dispersion relation associated with the aforementioned structure
is carried out. An initial numerical investigation is used to
enable short wave asymptotic approximations, giving phase speed
explicitly in terms of wave number, to be established. We remark
that a detailed understanding of the behaviour of the dispersion
relation is a critical pre-requisite in determining dynamic
response. Although traditionally much effort has been afforded to
fundamental modes, there is very good motivation to not neglect
the harmonics. For example, the solution of any impact problem
will generally involve contributions from each mode over the
entire wave number regime. Moreover, important features, such
as surface or interfacial waves, may arise from the cumulative
affects of the harmonics, rather than result from the short wave
limit of a single mode, see Rogerson (1992). We also remark that
Kaplunov et al. (1998) and Kaplunov and Markushevich (1993)
show that for certain types of vibration the contributions of higher
modes is significant.
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The problem of dispersion in layered pre-stressed media has
seen a number of publications over the last twenty years. Plane
incremental waves in incompressible and compressible elastic sin-
gle-layer plates (with traction free boundaries) were discussed in
Ogden and Roxburgh (1993) and Roxburgh and Ogden (1994),
respectively. An asymptotic short wave analysis for a single layer
plate was carried out in Rogerson (1997), Sandiford and Rogerson
(2000) and Nolde et al. (2004) for incompressible, nearly incom-
pressible and compressible materials, respectively. An extension
to three dimensional motion was carried in Pichugin and
Rogerson (2002) in respect of incompressible elastic single layer
plates. Many of the aforementioned papers are a good source of
references to earlier work.

The paper is organised as follows. In Section 2 a very brief
review of the underlying constitutive theory, and equations of
motion, is presented. The dispersion relation is derived in Section 3.
A numerical analysis of the dispersion relation is presented in
Section 4. From this numerical analysis it is shown that the short
wave limiting behaviour may be classified into six distinct cases.
Each of these cases are analysed in Section 5, within which short
wave asymptotic approximations are established in each case.
These approximations, give phase speed as an explicit function of
wave number and material parameters for each mode and are
shown to provide excellent agreement with the numerical solution
over a surprisingly large wave number regime. It is envisaged that
these might provide some help in the numerical inversion of the
highly oscillatory wave number integrals associated with impact
problems.

2. Governing equations

Only a brief summary of the relevant underlying theory is pre-
sented; for further details the reader is referred to [8]. We begin by
considering a homogeneous elastic body B, possessing a natural
isotropic unstressed state B0. A purely homogeneous static defor-
mation is imposed, resulting in the pre-stressed equilibrium state
Be. Upon Be, we superimpose a small time dependent motion
uiðXA; tÞ, resulting in the current material state Bt . Position vectors
of a representative particle are denoted by XA; xiðXAÞ and ~xiðXA; tÞ
in B0; Be and Bt respectively, with ~xi expressible in the form

~xiðXA; tÞ ¼ xiðXAÞ þ uiðXA; tÞ: ð1Þ

The deformation gradients associated with the deformations
B0 ! Bt and B0 ! Be are denoted by F and �F and take the compo-
nent forms

FiA ¼
@ ~xi

@XA
; �FiA ¼

@xi

@XA
: ð2Þ

On making use of Eqs. (1) and (2), F and �F may be related through

FiA ¼ ðdij þ ui;jÞ�FjA: ð3Þ

The most general isotropic strain-energy function is of the form

WðFÞ ¼WðI1; I2; I3Þ ð4Þ

with I1; I2 and I3 principal invariants of the left Cauchy–Green
strain tensor. The equations of infinitesimal incremental motion
may be written as

piA;A ¼ q0€ui; piA ¼
@W
@FiA

ð5Þ

with q0 the density per unit volume of B0; piA components of the
first Piola Kirchhoff stress tensor and a superimposed dot indicating
differentiation with respect to time. A linearised form (5) is obtain-
able in the form

Apibaua;bp ¼ qe€ui ð6Þ

with qe the material density per unit volume of Be and Apiba the
fourth order elasticity tensor, defined in the component form

Apiba ¼ J�1�FbC
�FpA

@2W
@FiA@FaC

�����
F¼�F

: ð7Þ

The components of A allow especially simple representation rela-
tive to the principal axes of the primary static deformation. The only
non-zero components have the form Aiijj; Aijij or Aijji with
i; j 2 f1;2;3g. These are given in terms of the principal stretches
km, with m 2 f1;2;3g, as

Aiijj ¼ J�1kikj
@2W
@ki@kj

; ð8Þ

Aijij ¼
J�1 ki

@W
@ki
� kj

@W
@kj

� �
k2

i

k2
i �k2

j

� � i – j ki – kj;

1
2 Aiiii �Aiijj þ J�1ki

@W
@ki

� �
i – j ki – kj;

8>><
>>: ð9Þ

Aijji ¼Ajiij ¼Aijij � J�1ki
@W0

@ki
i – j: ð10Þ

We also need a linearised measure of incremental traction, obtain-
able as

si ¼Ajilkuk;lnj ð11Þ

with n the outward unit normal to a material surface in Be.
Our aim is to consider wave propagation in layered media, lay-

ers having finite thickness in one spatial direction and infinite lat-
eral extent in the other two. Each layer is composed of elastic
material characterised by the strain energy function (4). A Carte-
sian coordinate system Ox1x2x3 is chosen, coincident with the prin-
cipal axes of deformation in Be, with Ox2 normal to the upper
traction free surface. A state of plane strain is assumed, with both
u1 and u2 independent of x3 and u3 � 0. On making use of (8)–(10)
in (6), the two non-trivial equations of motion are expressed as

A1111u1;11 þ ðA1122 þA2112Þu2;21 þA2121u1;22 ¼ qe€u1; ð12Þ

ðA1221 þA2211Þu1;12 þA1212u2;11 þA2222u2;22 ¼ qe€u2: ð13Þ

We now seek solutions of (12) and (13) in the form

ðu1;u2Þ ¼ ðU;VÞekqx2 eikðx1�vtÞ ð14Þ

yielding two linear homogeneous equations with non-trivial solu-
tions if

a22c2q4 þ fa22ð�v2 � a11Þ þ c2ð�v2 � c1Þ þ b2gq2

þ ð�v2 � a11Þð�v2 � c1Þ ¼ 0 ð15Þ

with �v2 ¼ qev2 and aij; ci and b defined by

aij ¼Aiijj; i; j 2 f1;2g; c1 ¼A1212; c2 ¼A2121;

b ¼ a12 þ c2 � r2 ð16Þ

and with r2 ¼ c2 �A1221 the principal Cauchy stress along Ox2. If
the two roots of equation (15) are denoted by q2

1 and q2
2, we note

these may be either real, purely imaginary or complex conjugates,
U and V may be presented as linear combinations of four generally
independent solutions. On making use of equations (12) and (13), U
and V may be expressed as

U ¼
X2

m¼1

Uð2m�1Þekqmx2 þ Uð2mÞe�kqmx2 ; ð17Þ

V ¼
X2

m¼1

gðqmÞ
b

qm Uð2m�1Þekqmx2 � Uð2mÞe�kqmx2d
� �

; ð18Þ
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