
Influence of internal impacts between fragments in dynamic brittle
tensile fragmentation

M. Vocialta, J.-F. Molinari ⇑
Civil Engineering Institute, Materials Science and Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 18, CH-1015 Lausanne, Switzerland

a r t i c l e i n f o

Article history:
Received 28 January 2014
Received in revised form 20 November 2014
Available online 16 January 2015

Keywords:
Fragmentation
Residual velocities
Contact
Cohesive elements

a b s t r a c t

Dynamic fragmentation phenomena involve two important mechanisms: atomic debonding and internal
impacts among formed fragments. While the former, i.e. energy dissipation due to crack propagation, has
been frequently studied both theoretically and numerically, the same does not apply to the latter due to
the inherent difficulty of tracking contact occurrences. In fact, in order to simplify computations, frag-
ment to fragment interactions are often neglected when dealing with tensile expansion. We study the
validity of this assumption using a simple 1D finite-element model. We consider a brittle bar subjected
to tensile loading, and model material failure with cohesive elements. We show that neglecting internal
contacts has little influence at high loading rates. However, our results reveal that even in initially pure
tensile cases, for low strain rates and brittle materials, fragment interactions drastically change the frag-
mentation process as well as the fragments’ residual velocities.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic fragmentation occurs when a material is subjected to
extreme loading. The failure is rapid and catastrophic. Cracks initi-
ate at internal material defects, propagate at high speeds and coa-
lesce to form fragments, which can move and impact each other.
The process is complex: it is fast transient, involves several dissi-
pating mechanisms, and is characterized by a high unpredictabil-
ity. Some aspects, such as fragments sizes distribution resulting
from dynamic fragmentation, have been extensively studied while
others, such as fragments residual velocities distribution have
received less attention. Noteworthy exceptions include the astro-
physics and defense communities (see for example Singer et al.,
2013; Grady, 1999; Zukas, 1982). Initially research on this topic
was carried out experimentally and analytically. The first notable
experiments were accomplished by Rosin and Rammler (1933)
and Mott and Linfoot (1943), together with the theoretical work
of Lienau (1936). Some semi-empirical models correlating masses
and velocities were proposed more recently. In particular for the
mass-velocity relation the following power law was introduced
by Nakamura and Fujiwara (1991)

v / m�k ð1Þ

where v and m are the fragment’s velocity and mass, while k is an
experimental constant that in high-velocity impact (km/s) regime
was found to be k � 1=6 for basalt and alumina. However, following
studies conducted by Giblin (1998) on an artificial rock similar to
basalt, showed that for this specific case a power law did not apply.
A similar behavior was observed by Kadono et al. (2005) on thin
glass plates. Also the defense community developed some formulas
to estimate the velocity of fragments. An example is represented by
the Gurney’s equation, namely a power law relating velocity and
mass (Gurney, 1943). For a fragment released in the explosion of
a cylindrical shell, this equation states that
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where v is the fragment velocity in m/s, M the mass of the casing, C
the mass of the explosive (same unit as M), and

ffiffiffiffiffiffi
2E
p

is called Gur-
ney constant and its unit is m/s.

Thanks to the considerable and fast development of computers,
numerical methods have become an increasingly effective tool for
researchers. As far as dynamic fragmentation is concerned, two
main numerical approaches can be distinguished: particle and con-
tinuum methods. In the first case materials are represented by a
finite number of discrete particles. This approach permits to handle
discontinuities and big deformations more easily, but at the same
time usually leads to costly computations and adds a non-physical
length scale due to spacing among particles (it is only at the atomic
scale that materials can effectively be represented by particles).
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A classical example is the smooth particle hydrodynamics (SPH),
that was born in the late ’70s (Gingold and Monaghan, 1977;
Lucy, 1977) and was employed in solid mechanics impact simula-
tions for the first time by Libersky et al. (1993). According to the
second approach, materials are initially represented as continuum
bodies in order to capture rigorously the mechanical behavior
together with a low computational cost. The drawback is that mod-
eling discontinuities (cracks) is challenging. Several approaches
can be selected. In the continuum-damage approach the elements’
stiffness is progressively decreased along crack paths. The non-
local formulation (see for example Pijaudier-Cabot and Bažant,
1987) proved to be an effective mesh independent method for frac-
ture mechanics. However it does not include contact and crack
paths are not precisely defined but spread over several elements.
An alternative method consists in using cohesive elements, which
are zero thickness elements that let cracks propagate along stan-
dard elements’ edges. They have been successfully utilized to
model fragmentation upon impact by Camacho and Ortiz (1996).
The limitation of this method is its mesh dependency, since cracks
are forced to pass through elemental edges. Mesh dependency and
convergence have been analyzed by Zhou and Molinari (2004),
Molinari et al. (2007) and Levy and Molinari (2010). The eXtended
Finite Element Method (XFEM) has been developed by Moës et al.
(1999) to obtain mesh independent crack paths. The method is
however not adequate for fragmentation, which involves extensive
crack branching and coalescence patterns.

No matter which numerical method is used, the main objective
of realistic dynamic fragmentation simulations is to account for all
important mechanisms including failure and internal contacts.
While much attention has been given to reproducing an accurate
crack network, in tensile fragmentation simulations the influence
of contact has often been neglected (e.g. Levy et al., 2012). There-
fore the aim of this article is to analyze the importance of contact
on such simulations. The following data will be tracked:

1. number of fragments;
2. dissipated energy;
3. residual velocities.

For this purpose a very simple case is considered: a brittle
quasi-1D bar under uniform traction modeled through FEM with
cohesive elements. In this problem, when cracking occurs, stress
waves propagate inside the material and consequently fragments
repeatedly shrink and expand, generating multiple contacts among
themselves. First, a reference case without energy dissipation and
contact is analyzed. Then, these last two physical components
are sequentially added.

Section 2 contains a description of the model, from its underly-
ing equations to the boundary and initial conditions, etc. In Section
3 the results obtained when contact is neglected are presented. The
fragments’ velocities are monitored throughout the simulation and
compared to the initial ones. Finally Section 4 shows results
obtained after having introduced contact in the model. Also in this
case the fragments’ velocities are compared with the initial ones
and the differences with respect to the case without contact are
highlighted.

2. Numerical setup

2.1. Mechanical model and cohesive rupture

We solve the equation of motion

r � r ¼ q €u ð3Þ

where r is the stress tensor, q is the density and €u is the
double derivative of displacement with respect to time, namely

acceleration. No body force is considered in this work. The solver
is based on two levels of discretization: over space (with elements)
and over time. Integration over time is carried out with an explicit
central difference integration scheme. Further details can be found
for example in Belytschko et al. (2000).

In FEM cracks implementation is often based on the cohesive
zone concept introduced by Dugdale (1960) and Barenblatt
(1962). The relationship between surface traction and crack open-
ing displacement is called cohesive law. In this work the linear irre-
versible cohesive law proposed by Camacho and Ortiz (1996) is
used (see Fig. 1). However, in our quasi-1D application, an
advanced management of contact is not necessary, because contact
surfaces are immediately determined and no sliding occurs. There-
fore contact can be integrated in the cohesive law by means of a
penalty coefficient a. The cohesive tractions T per unit deformed
area for a given opening d are

Tðd; dmaxÞ ¼
rc 1� d

dc

� �
for d ¼ dmax

Tmax
dmax

d for 0 6 d < dmax

ad for d < 0

8>><>>: ð4Þ

in which three cases are taken into account:

� crack opening;
� crack closure/reopening;
� interpenetration.

At every time step dmax is updated. After reaching dmax ¼ dc, any
tensile traction is zero but compressive tractions may still occur at
a later stage if the crack faces are forced to close. In our model, the
dissipated and reversible energies can be defined as

Ediss ¼
1
2
rc dmax ð5Þ

Erev ¼
1
2

T d ð6Þ

and so when decohesion is complete Ediss ¼ Gc ¼ 1
2 rc dc. Moreover a

damage parameter D can be defined as

D ¼min
dmax

dc
;1

� �
ð7Þ

which varies from 0 (undamaged condition) to 1 (fully damaged
condition). This variable can only increase because damage is an

Fig. 1. Linear decreasing cohesive law.
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