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a b s t r a c t

Experiments on soft polycrystalline aluminum have yielded evidence that, besides the required punch
load, both the size and shape of imprinted features are affected by the scale of the set-up, e.g. substantial
details are lost when the characteristic length is on the order of 10 lm. The objective of this work is to
clarify the role played by strain gradients on this issue, and to shed light on the underlying mechanisms.
For this, indentation by a periodic array of flat punch indenters is considered, and a gradient enhanced
material model that allows for a numerical investigation of the fundamentals are employed. During a lar-
gely non-homogeneous deformation, the material is forced up in between the indenters so that an array
of identical imprinted features is formed once the tool is retreated. It is confirmed that the additional
hardening owing to plastic strain gradients severely affects both the size and shape of these imprinted
features. In particular, this is tied to a large increase in the mean contact pressure underneath the punch,
which gives rise to significant elastic spring-back effects during unloading.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Flat punch indenting of elastic–plastic solids has earned
renewed interest in recent years as a way of rapidly mass produc-
ing micron surface features. To achieve high throughput, the
surface punching has been evolved into a continuous micro-man-
ufacturing process that relies on imprinting/molding by rolling
(referred to as roll-molding, (Lu and Meng, 2013)). However, the
underlying mechanisms remains the same. In its simplest form, a
flat patterned indentor is pressed into the underlying material
and thereby leaving an imprint in the plastically deformed surface
once retreated. This classical problem is well-established in the lit-
erature, not the least owing to the slip-line field solutions for an
rigid perfectly plastic solid by Hill (1950), which has been verified
in numerical studies employing conventional plasticity (Nepershin,
2002). Their efforts, along with corresponding studies on pyrami-
dal (Vickers or Knoop), spherical (Brinell) and wedge indentation,
have yielded important in-sight into the underlying mechanics,
and indentation has become a widely used standard technique in
material testing at all scales. It is, however, recognized that indent-
ing at small scales results in increased yield resistance, for materi-
als that deform plastically by dislocation movement, when
compared to large scale testing.

When employing indenting (or punching) for manufacturing
purposes, the surface imprint is often aimed to represent a coun-
terpart to the indenter as closely as possible. However, a perfect
match is complicated by effects such as elastic spring-back, strain
gradient hardening, material inertia, and viscosity. Redesign of the
punch may improve the imprint, but in general perfectly sharp
edges cannot be achieved and some surface curvature must be
accepted; this with little noticeable different at large scales. How-
ever, deviations from perfectly sharp edges become increasingly
evident when the punching process is down-scaled to do micro-
manufacturing. Unfortunately, the goal of attaining sharp edges,
and abrupt variations in the deformed geometry, are associated
with large strain gradients, which lead to the before mentioned
increased hardening at micron scale. The explanation for this is
now generally accepted to lie in the concept of Geometrically Nec-
essary Dislocations (GND’s). When large plastic strain gradients
appear GND’s must be stored (Ashby, 1970), and this gives rise to
free energy associated with the local stress field of the GND’s, as-
well as increased dissipation when the GND’s move in the lattice.
At small scales, GND’s can become a substantial portion of the total
dislocation density which is normally dominated by so-called Sta-
tistically Stored Dislocations (SSD’s) at larger scale. Thus, a larger
amount of energy is required to deform the material at small scales
in the presence of gradients, and this leads to an apparent increase
in yield stress and strain hardening. To accurately predict the
shape and size of imprints made during micro-manufacturing the
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employed material model must therefore represent stresses over
the full range of length scales involved.

A vast amount of theoretical literature seeking to encapsulate
the experimentally observed gradient effects at micron scale has
been put forward, counting both phenomenological models
(Aifantis, 1984; Fleck and Hutchinson, 1997, 2001; Gudmundson,
2004; Gurtin and Anand, 2005; Lele and Anand, 2008; Fleck and
Willis, 2009a,b), and micro-mechanics based models (Gao et al.,
1999; Huang et al., 1999; Gurtin, 2002; Qiu et al., 2003). The higher
order theory by Fleck and Willis (2009b) is employed in the current
study, and the concept of higher order stresses, work conjugate to
the strain gradients, is thus adopted to widen the range of length
scales for which the model is valid. The objective is to model an
experiment on soft polycrystalline aluminum at small scale, where
the impression made by a periodic array of micro-indenters devi-
ates substantially from that observed at larger scales. Through
numerical modeling it is the aim to clarify the influence of plastic
strain gradients. Moreover, by including unloading the elastic
spring-back can be quantified when compared to the surface shape
at maximum indentation depth. By choosing a material length
parameter of LD ¼ 1 lm, it is demonstrated that significant gradi-
ent effects should be expected for imprinted features with a char-
acteristic length on the order of 10 lm and below. This choice of
length parameter are in line with the estimates for the length
parameter put forward by Hutchinson (2000) (LD � 0:25� 5 lm,
depending on the gradient type being stretch or rotational), and
recently by Danas et al. (2012) (LD � 0:5� 1:5lm).

The paper is structured as follows. The considered boundary
value problem is summarized in Section 3, while the material
model formulation and numerical procedure are briefly outlined
in Sections 2 and 4. A modeling framework capable of predicting
the rate-independent material response is employed, and the
results are laid out in Section 5. Focus is on shape and size changes
to the imprints made onto the plastically deformed surface, as-well
as on changes to the loading history due to strain gradient effects.
Some concluding remarks are given in Section 6.

2. Strain gradient material models

In spite of indentation being an inherent finite strain problem, a
small strain version of the strain gradient plasticity theory by Fleck
and Willis (2009b) (tensorial version) is employed in this study as
a first approximation. This is considered sufficient for the small
indentation depths analyzed. A compact summary of the rate-inde-
pendent model formulation published by Nielsen and Niordson
(2013, 2014) is given below. Throughout, Einstein’s summation
rule is utilized in the tensor equations and ðÞ;i denotes partial dif-
ferentiation with respect to the spatial coordinate xi.

2.1. Fundamentals of the Fleck–Willis strain gradient theory

A small strain formulation is employed. The total strain rate is
determined from the gradients of the displacement rates;
_eij ¼ ð _ui;j þ _uj;iÞ=2, and decomposed into an elastic part, _ee

ij, and a
plastic part, _ep

ij, so that; _eij ¼ _ee
ij þ _ep

ij. For a higher order gradient
dependent material, involving higher order stresses, the principle
of virtual work reads (Gudmundson, 2004)
Z

V
rijdeij þ ðqij � sijÞdep

ij þ sijkdep
ij;k

� �
dV

¼
Z

S
Tidui þ tijdep

ij

� �
dS: ð1Þ

Here, rij is the symmetric Cauchy stress tensor, and
sij ¼ rij � dijrkk=3 its deviatoric part. In addition to conventional
stresses, the principle of virtual work incorporates the so-called

micro-stress tensor, qij (work-conjugate to the plastic strain, ep
ij),

and the higher order stress tensor, sijk (work-conjugate to plastic
strain gradients, ep

ij;k). The right-hand side of Eq. (1) thereby
includes both conventional tractions, Ti ¼ rijnj, and higher order
tractions, tij ¼ sijknk, with nk denoting the outward normal to the
surface S, which bounds the volume V.

The mechanisms associated with dislocation movement and/or
storage of geometrically necessary dislocations (GND’s) (Ashby,
1970; Gurtin, 2002; Ohno and Okumara, 2007) have been incorpo-
rated into the current higher order theory by assuming the micro-
stress, qij, and higher order stresses, sijk, to have a dissipative part
only, such that; qij ¼ qD

ij , and sijk ¼ sD
ijk. Thus, assuming the form

of the free energy to be

W ¼ 1
2
ðeij � ep

ijÞLijklðekl � ep
klÞ ð2Þ

the conventional stresses are derived as; rij ¼ @W=@ee
ij ¼

Lijklðekl � ep
klÞ, where Lijkl is the isotropic elastic stiffness tensor. In

this study, all energetic gradient contributions are omitted. The dis-
sipative stress quantities in the plastic regions read (Gudmundson,
2004; Fleck and Willis, 2009b)

qD
ij ¼

2
3

rC

_Ep
_ep

ij; and sD
ijk ¼

rC

_Ep
ðLDÞ2 _ep

ij;k ð3Þ

with rC and _Ep identified as the effective stress and the associated
effective plastic strain rate, respectively, given by

rC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

qD
ij q

D
ij þ ðLDÞ�2sD

ijksD
ijk

r
; and _Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ep
ij
_ep

ij þ ðLDÞ2 _ep
ij;k

_ep
ij;k

r
:

ð4Þ

Here, _ep
ij;k is the gradient of the plastic strain rates, and LD is the

dissipative length parameter which is included for dimensional
consistency. The quantities defined in Eqs. (3) and (4) only exists
in the plastic regions (in which rC ¼ rF), while qD

ij ¼ qij ¼ sij in
the elastic regions, such that the effective stress reduces to the con-
ventional von Mises stress. An isotropic power hardening material
is modeled in the present work, with the current flow stress given
by

rF ½Ep� ¼ ry 1þ Ep

ry=E

� �N

ð5Þ

Here, E is Young’s modulus, N is the strain hardening exponent,
and ry is the initial yield stress. The material parameters used in
the simulations are given in Table 1.

To complete the higher order theory, Fleck and Willis (2009b)
put forward two minimum principles that delivers the incremental
solution to the displacement rate field, _ui, and plastic strain rate
field, _ep

ij.
Assume that the current stress/strain state is known in terms of

the displacement, ui, and plastic strain, ep
ij, fields. The plastic strain

rate field, in the subsequent load increment, is thereby determined
as; _ep

ij ¼ k _ep�
ij , where the plastic trial field, _ep�

ij , follows from the min-
imum statement (Minimum Principle I in Fleck and Willis, 2009b)

Table 1
Mechanical properties.

Parameter Significance Value

ry=E Uniaxial yield strain 0.001
m Poisson’s ratio 0.3
N Strain hardening exponent 0.05–0.2
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