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a b s t r a c t

The study of spinning axisymmetric cylinders undergoing finite deformation is a classic problem in sev-
eral industrial settings – the tire industry in particular. We present a stability analysis of spinning elastic
and viscoelastic cylinders using ARPACK to compute eigenvalues and eigenfunctions of finite element dis-
cretizations of the linearized evolution operator. We show that the eigenmodes correspond to N-peak
standing or traveling waves for the linearized problem with an additional index describing the number
of oscillations in the radial direction. We find a second hierarchy of bifurcations to standing waves where
these eigenvalues cross zero, and confirm numerically the existence of finite-amplitude standing waves
for the nonlinear problem on one of the new branches. In the viscoelastic case, this analysis permits us to
study the validity of two popular models of finite viscoelasticity. We show that a commonly used finite
deformation linear convolution model results in non-physical energy growth and finite-time blow-up
when the system is perturbed in a linearly unstable direction and followed nonlinearly in time. On the
other hand, Sidoroff-style viscoelastic models are seen to be linearly and nonlinearly stable, as is physi-
cally required.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The behavior of steady spinning bodies at finite deformation is
of both theoretical and practical interest. In the special case that
the body is axisymmetric, there has been a fair amount of work
devoted to its formulation, elucidation, and behavior. Notable early
work on the finite deformation spinning axisymmetric body is due
to Padovan and Paramodilok (1983, 1985), Oden and Lin (1986),
Padovan (1987), Bass (1987) and Kennedy and Padovan (1987).
This literature formulates the equations of motion in the frame
of reference of a non-spinning observer translating alongside the
rotating body, and then to various degrees examines the equilib-
rium solutions of the motion as the spin rate is varied. The issues
of contact with ‘‘roadways’’ and viscoelastic as well as elastic
response are considered. The work of LeTallec and Rahier (1994),
which followed this early work, provides the first clear description
of the problem’s kinematics and, by virtue thereof, lays the ground-
work for the proper understanding of the issues associated with
correctly specifying the constitutive response of a spinning body
in a non-spinning frame of reference; see Govindjee and Mihalic
(1998) for a discussion of this point, and the work of Faria et al.

(1992), which shows that the issue was somewhat understood
prior to these latter two works.

A special feature of the response of a steady spinning elastic cyl-
inder is the existence of non-axisymmetric stationary solutions
(standing waves) that appear as bifurcations from an axisymmetric
branch in the configuration space of the body (Oden and Lin, 1986;
Chatterjee et al., 1999). The determination of these bifurcation
speeds can be performed by searching for the spin rates at which
the tangent operator of the equations of motion becomes singular.
Similar non-axisymmetric steady spinning solutions have also
been reported upon in the case of finite deformation viscoelasticity
(Padovan and Paramodilok, 1983, 1985; Kennedy and Padovan,
1987; Chatterjee et al., 1999). However, in the viscoelastic case,
external forcing through contact with a roadway or counter-rotat-
ing cylinder is required for these states to remain steady in time
(Chatterjee et al., 1999).

In the present work, we study the linearized dynamics about
the axisymmetric state of a freely spinning elastic or viscoelastic
cylinder (not in contact with a roadway) and interpret all the
eigenvalues and eigenfunctions as giving information on the
dynamic behavior of the system on perturbation. We study the
effect of rotating the eigenfunctions about the origin and classify
them according to their rotational symmetry group and the num-
ber of radial oscillations in a tensor product representation. We
are not aware that this structure of the eigenfunctions has previ-
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ously been recognized. We also show that a typical eigenmode can
be interpreted as a traveling wave that progresses around the cyl-
inder in the lab frame with an angular velocity that depends on the
imaginary part of the eigenvalue. In the elastic case, the real part of
resolved eigenvalues (computed using ARPACK on a finite element
discretization of the linearized evolution operator) is always found
to be zero and the amplitude of the traveling wave remains con-
stant in time. In the viscoelastic case, the wave decays (or grows)
at a rate determined by the real part of the eigenvalue. In the spe-
cial case of a zero eigenvalue, the traveling wave is actually sta-
tionary in time, indicating a potential bifurcation to a branch of
finite-amplitude standing wave solutions. This is consistent with
previous studies that predict such bifurcations when the tangent
operator becomes singular.

The traveling wave description of the eigenmodes of the linear-
ized problem provides a physical interpretation for the critical
rotation speed xc beyond which bifurcations to standing wave
solutions are possible. In the same way that a traveling water wave
in a canal appears stationary to an observer riding alongside it on
horseback (Russel, 1845), a traveling wave in a rotating elastic cyl-
inder appears as a stationary solution in the lab frame if it travels
backward through the medium at the speed of rotation. Below the
critical speed, all modes of the linearized operator travel through
the physical medium faster than the rotation rate, so a stationary
solution is not possible. However, for special values of x greater
than xc , namely the values of x where an eigenvalue of the tan-
gent operator is zero, there is one wave traveling backward
through the medium at the same rate that the medium travels for-
ward. The fact that the bifurcation speeds x accumulate at xc sug-
gests that the traveling speed of a mode through the medium
approaches a limiting value as the azimuthal wave number of
the mode approaches infinity. In their monograph, Rabier and
Oden (1989) offer a similar explanation in the incompressible case,
crediting Faria with the insight, but using a half-plane analysis to
predict wave speeds around the cylinder rather than interpreting
eigenmodes as traveling waves.

In our framework, the traveling speeds of the eigenmodes are
measured in the lab frame; thus, many highly complex spatial
modes are found to travel slowly when x > xc , since their speed
through the medium is comparable to the speed of the medium
in the opposite direction. This leads to an unusual and difficult
eigenvalue problem in which the ordering of the eigenvalues along
the imaginary axis has little correspondence with the spatial com-
plexity of the modes. In light of these difficulties, it is remarkable
that Rabier and Oden were able to prove existence of finite-ampli-
tude standing wave branches in the incompressible case, with
bifurcation points converging to xc from the right, using Lyapu-
nov–Schmidt theory and Fredholm index theory.

Treating non-zero eigenvalues of the tangent operator on equal
footing with the zero eigenvalues leads to many new questions. In
particular, it is likely that families of finite-amplitude traveling
solutions for the nonlinear problem bifurcate from non-zero
(imaginary) eigenvalues. Computing such solutions would entail
formulating the problem in a reference frame that rotates at the
speed of the traveling wave in the lab frame, which is different
than the rotation rate of the cylinder. Cyclic dynamics of the non-
linear problem may also result when bifurcations from superposi-
tions of two linearized traveling waves exist. As a first step to
exploring these possibilities, we show that one of the stationary
modes that lies outside of the Oden and Lin hierarchy (due to a
more complicated radial dependence) leads to a bifurcation branch
of finite-amplitude solutions.

In the viscoelastic case, the eigenvalues have a non-zero real
part, so rather than indicating bifurcations to pure stationary or
traveling solutions, the eigenmodes also decay (or grow) in time
at a rate determined by the magnitude (and sign) of the real part.

The imaginary parts of these eigenvalues behave much the same as
in the elastic case, with a critical frequency xc beyond which many
modes emerge with complex spatial structure that travel slowly or
remain stationary in the lab frame; however, due to the non-zero
real part of the eigenvalue, these modes decay (or grow) as they
travel. Exponential growth of well-resolved eigenmodes indicates
that the system is linearly unstable. When this occurs, we explore
nonlinear stability by seeding the stationary solution with a per-
turbation in the unstable direction and evolving the system
through time according to the full nonlinear evolution equations.
Finite-time blow-up indicates a deficiency in the underlying (vis-
coelastic) material model.

An important issue when considering the mechanical response
of continuum bodies is that the constitutive relations that are
selected must satisfy the Clausius–Duhem inequality expressing
the second law of thermodynamics; see e.g. Coleman and Noll
(1963) or Truesdell and Noll (1965, Section 79). In the finite defor-
mation viscoelastic setting there are two approaches to setting up
such constitutive relations. One, due to Coleman (1964a,b), is to
construct a free energy functional of the history of the material
whose derivative with respect to the current deformation gradient
yields a history functional giving the stress response. This frame-
work seems natural for convolution type viscoelastic models, such
as the well-known BKZ model (Bernstein et al., 1963) and the Simo
model (Simo, 1987). Notwithstanding the popular status of these
two models, and the formal appearance of convolution expressions
in their specification, the requisite free-energy functional that gen-
erates them has never been reported. In other words, while these
models have the appearance of being strictly dissipative, it is actu-
ally not known if they satisfy the Clausius–Duhem inequality
except in the infinitesimal strain limit, where they do. An alternate
viscoelastic framework is provided by the work of Sidoroff (1974),
who proposes a multiplicative split of the deformation gradient,
similar to finite deformation plasticity models, and then directly
constructs evolution laws for the viscoelastic variables that satisfy
the Clausius–Duhem inequality. Well known examples of models
of this type are due to LeTallec and Rahier (1994) and Reese and
Govindjee (1998b).

The spinning body problem provides an ideal setting for a deep
comparison of these two distinctly different modeling frameworks.
In particular we are able to demonstrate that models of the Simo-
class become unstable (both linearly and nonlinearly) at high rota-
tion rates, leading to non-physical results. By contrast, models of
the Sidoroff-class behave well in similar situations. This point is
particularly relevant for analysis schemes that rely upon a steady
spinning state of a system followed by transient computation –
e.g. in the modeling of a tire traveling at high speed that encoun-
ters a bump in the road.

An outline of the remainder of the paper is as follows: In Sec-
tion 2 we review the strong and weak formulations of the elastic
spinning body problem in both the steady and unsteady cases
and discuss its Hamiltonian structure. In Section 3 we revisit the
well-studied elastic bifurcation case to show that our formulation
is consistent with previous work. We then go further to elucidate
the structure of linearized solutions and identify a second hierar-
chy of bifurcations that have not been reported in numerical stud-
ies to our knowledge, but were mathematically foreshadowed in
the monograph of Rabier and Oden (1989). We also compute a
finite-amplitude standing wave on one of the new bifurcation
branches. With this background, in Section 4 we present two visco-
elastic models in a form suitable for the study of spinning bodies.
This is followed in Section 5 by a stability analysis of the behavior
of spinning viscoelastic cylinders and the strong influence of the
choice of viscoelastic modeling framework. In Section 6 we con-
sider a full nonlinear stability analysis and show that convolu-
tion-type viscoelastic models can lead to non-physical
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