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a b s t r a c t

We study the problem of impact-induced shock wave propagation through a model one-dimensional
heterogeneous medium. This medium is made of a model material with spatially varying parameters
such that it is heterogeneous to shock waves but homogeneous to elastic waves. Using the jump
conditions and maximal dissipation criteria, we obtain the exact solution to the shock propagation
problem. We use it to study how the nature of the heterogeneity changes material response, the structure
of the shock front and the dissipation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Shock wave propagation in solids has been extensively studied
for a number of decades, see for example Davison (2008) and the
references there. Shocks are described as a moving front across
which the stress, strain and particle velocity suffer a discontinuity.
They occur when subjected to large deformations at high deforma-
tion rates as a result of the nonlinear nature of the equation of
state.

While shocks are idealized as a discontinuity, in reality they
have a structure where the state of stress varies sharply but
smoothly across a narrow region to connect to the limiting states.
This structure is commonly attributed to time-dependent inelastic
process like viscoelasticity (Band, 1960), viscoplasticity (Swegle
and Grady, 1985; Armstrong et al., 2007; Johnson and Barker,
1969), twinning etc. In particular, Swegle and Grady (1985) com-
piled experimental observations of a wide range of metals and
showed that the shock structure follows an universal fourth power
law – the peak strain rate in the shock is proportional to the fourth
power of the jump in stress across the shock wave. They also
proposed a viscoplastic constitutive law consistent with this obser-
vation. Recently, Molinari and Ravichandran (2004) revisited this
analysis following the constitutive framework of Clifton (1971).

The models of shock structure that are mentioned above are
ultimately phenomenological and assume that the material is
homogeneous. However, most experiments are conducted on

polycrystalline media. One would have significant scattering and
dispersion of the elastic and inelastic waves in such a media.
Grady (1998) explored the scattering of waves in solids as an
alternative explanation to the structured shock waves. In this anal-
ysis, elastic modes which were treated using a quasi-harmonic
approximation and statistical mechanics were coupled to a
nonlinear wave propagation problem. It was shown that this
theory produced results in accordance with the single shock data
for metals. However, the proposed model was not able to predict
more complicated loading like two step shocks. A complete
discussion on the fourth power law is presented by Grady (2010).

Structured shocks have also been examined in strongly hetero-
geneous media, and they do not display the fourth power law in
general (Grady, 2010). Zhuang et al. (2003) observed a second
power law in periodically layered composites. This work also
highlighted the role of scattering by using stress sensors interior
to the specimen. Vogler et al. (2012) reinterpreted the observations
and suggested an exponent of 2.4 (instead of 2). They also found an
exponent of 2–3 in particulate composites and linear relation in
granular media. These different exponents in composites are
attributed to the scattering of shock waves (as opposed to elastic
waves).

The scattering of elastic waves (in linear media) has been
widely studied both experimentally and theoretically. Much is
known about periodic media where resonances create a highly fre-
quency dependent response through the use of the Bloch–Floquet
theory (Sun et al., 1968; Lee and Yang, 1973; Nayfeh, 1995). There
is also an understanding of random media and how multiple
scattering leads to diffusive response (Ryzhik et al., 1995).
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In contrast, much less is known about nonlinear wave propaga-
tion in heterogeneous solids. Chen et al. (2004) adapted the Bloch–
Floquet analysis to study plate impact on a periodically layered
medium. They developed an analytic solution for the linear case,
and used it to obtain an approximate solution for the nonlinear
case by making an ansatz about the wave reflections and matching
the impedence to nonlinear response. There is also an extensive
study of interactions at individual interfaces (Davison, 2008, ch.
9) considering characteristic solutions and Riemann invariants.
Since the system also contains rarefaction waves, the interaction
happens over a zone and this makes the analysis quite involved.

In this work, we build on the study of individual interactions to
understand the collective response of a heterogeneous medium with
multiple interfaces. Specifically we consider a one-dimensional
piecewise homogeneous material with perfectly bonded interfaces.
In a typical shock process, the loading happens along the material’s
Hugoniot while the unloading happens along an isentrope. This
leads to a system of shocks and rarefaction waves traveling in
the medium. The interaction between shocks, rarefaction waves
and interfaces happen over a zone and the solutions are not piece-
wise uniform. To keep the problem tractable, we idealize the equa-
tion of state of each segment in a piecewise affine manner so that
there are no rarefaction waves and elastic waves propagate homo-
geneously, and the heterogeneity is limited to shock waves. We
also assume isothermal conditions for simplicity.

It is customary in the study of shock waves to specify an empir-
ical (often linear, (Ruoff, 1967)) relation between the shock speed
and particle velocity. We follow Knowles (2002) instead and
specify the equation of state as a relation between stress and
strain, and supplement it with a kinetic relation that relates the
rate of dissipation at the shock front to the shock speed. This
framework was introduced in the study of phase transitions
(Abeyaratne and Knowles, 1991, 1992), but has also been shown
to be useful in the study of shocks (Knowles, 2002; Niemczura
and Ravi-Chandar, 2011). In our context, this framework allows
us to quickly identify parameters that simplify rarefaction waves
and make the elastic waves propagate homogeneously.

We also neglect the structure of the shock, and treat it as a
discontinuity. It is known (Abeyaratne and Knowles, 1992) that
the kinetic relation can be chosen such that the dissipation at the
discontinuity is exactly equal to that of the dissipation in
structured shocks. It has also been recently shown (Tan and
Bhattacharya, in preparation) that the equivalent sharp
discontinuity treatment is appropriate when the length-scale of
the heterogeneous media is large compared to the inherent
length-scale of the structure shock.

There are a number of powerful numerical methods that can be
used in the study of shock waves in one and higher dimensions for
detailed empirical material models (see for example Zukas, 2004).
These can be used to gain detailed information in specific exam-
ples. Our approach using an idealized model is unable to provide
such high fidelity information. Instead, the simplified framework
that we propose can provide important insight and understanding
about a broad range of phenomena. Further, every numerical
method has limited resolution (even if it is extremely fine), and
this becomes an issue when one has multiple interfaces and reflec-
tions. Our results can be used to benchmark these numerical
studies.

After recalling the governing equations in Section 3, we study
the interaction between a shock wave and an interface in Section 4.
Since there are no rarefaction waves, solutions are piecewise
uniform in space–time and the interaction leads to a Riemann
problem. We are able to solve this Riemann problem analytically.
We show that increasing compressibility dissipates the shock
while decreasing compressibility intensifies the shock. We extend
the analysis to semi-infinite media in Section 5. We show that the

shock speed and state of stress in any segment depends only on the
properties of the first and that segment.

We turn to the impact of a finite medium in Section 6. We take
advantage of the fact that the solution is piecewise constant, and
thus it only remains to follow the shock and elastic waves. We pro-
pose a new object oriented algorithm to solve this problem exactly.
In short, we follow each (elastic and shock) wave and account for
all interactions explicitly. We use this method in Section 7 to study
the influence of parameters like number of interfaces, arrangement
of layers in the target and length of the impactor on the dynamics
of the problem on particle velocity profiles, shock structure and
effective shock velocities. We use it to provide insights into the
optimal arrangement for enhanced attenuation. We conclude in
Section 8 with a discussion of the main results.

2. Problem statement

We analyze a plate impact induced shock propagation through
an idealized nonlinear heterogeneous material. Fig. 1 provides a
schematic illustration of the problem. We use the sign convention
that compression is positive. We have a linearly elastic impactor
traveling at the speed v impact hit a heterogeneous medium or target.
The right edge of the ensemble and the left edge of the impactor
are free, and the impactor is free to separate from the target.

The heterogeneous medium or target is made of N segments or
elements. All the interfaces are perfectly bonded. Each element is
made up of a material that follows a piecewise affine stress - strain
curve as shown in Fig. 1.1 Real materials have an effective stress–
strain curve that is characterized by an elastic linear region, followed
by an yield or Hugoniot elastic limit, and in turn followed by a con-
vex increasing stiffening nonlinear response (Marsh, 1980). We ide-
alize this behavior using a piecewise affine curve. This allows the
problem to be simple enough for detailed analysis while retaining
the essential features like wave–wave and wave-boundary interac-
tions. Specifically, it collapses rarefaction waves on to unloading
shocks. A further idealization is that each material has the same
yield strength (r1), Young’s modulus (E) and density (q). So the
material is elastically homogeneous. However, each material has a
different compressibility ec and thus material is heterogeneous with
respect to shock waves.

We assume for simplicity that the problem is isothermal.

3. Governing equations

We work in a Lagrangian setting. We denote particle velocity,
strain and stress at the particle X in the reference configuration

Fig. 1. Schematic representation of the impact problem.

1 It is customary in the study of shocks to specify the constitutive relation as a
(often linear) relation between the shock speed and particle velocity. We report this
relation later for our material.
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