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a b s t r a c t

Spatial pattern formation in stiff thin films on compliant substrates is investigated based on a nonlinear
3D finite element model. Typical post-bifurcation patterns include 1D sinusoidal, checkerboard and her-
ringbone shapes, with possible spatial modulations, boundary effects and localizations. The post-buckling
behavior often leads to intricate response curves with several secondary bifurcations that were rarely
studied and only in the case of periodic cells. The proposed finite element procedure allows accurately
describing these bifurcation portraits by taking into account the effect of boundary conditions. It relies
on the Asymptotic Numerical Method (ANM) that offers considerable advantages to get a robust path-
following technique and to detect multiple bifurcations. The occurrence and evolution of sinusoidal,
checkerboard and herringbone patterns will be highlighted.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Surface morphological instabilities of stiff thin layers attached
on soft substrates are of growing interest in a number of academic
domains including micro/nano-fabrication and metrology (Bowden
et al., 1998), flexible electronics (Rogers et al., 2010), mechanical
and physical measurement of material properties (Howarter and
Stafford, 2010), and biomedical engineering (Genzer and
Groenewold, 2006) as well as biomechanics (Li et al., 2011). The
pioneering work of Bowden et al. (1998) leads to several theoreti-
cal and numerical works in terms of stability study devoted to
linear perturbation analysis and nonlinear buckling analysis
(Huang and Suo, 2002; Chen and Hutchinson, 2004; Huang et al.,
2004, 2005; Huang, 2005; Huang and Im, 2006; Im and Huang,
2008; Mahadevan and Rica, 2005; Wang et al., 2008; Song et al.,
2008; Audoly and Boudaoud, 2008a,b,c; Lee et al., 2008). In most
of these papers, the 2D or 3D spatial problem is discretized by
either spectral method or Fast Fourier Transform (FFT) algorithm,
which is fairly inexpensive but prescribes periodic boundary con-
ditions. In this framework, several types of wrinkling modes have
been observed, including sinusoidal, checkerboard, herringbone
(see Fig. 1) and disordered labyrinth patterns. It has been early rec-
ognized by Chen and Hutchinson (2004) that such systems can also

be studied by finite element methods, which is more computation-
ally expensive but more flexible to describe complex geometries
and more general boundary conditions, and allows using commer-
cial computer codes. In addition, 3D finite element simulations of
film/substrate instability were studied only in few papers (Chen
and Hutchinson, 2004; Cai et al., 2011). Furthermore, the post-
buckling evolution and mode transition of surface wrinkles in 3D
film/substrate systems are rarely studied and only in the case of
periodic cells (Cai et al., 2011), which still deserves further investi-
gation, especially through finite element method that can provide
the overall view and insight into the formation and evolution of
wrinkle patterns in more general conditions. Can one obtain the
variety of 3D wrinkling modes reported in the literature by using
classical finite element models? Can one describe the whole evolu-
tion path of buckling and post-buckling of this system? Under
what kind of loading and boundary conditions can each type of
patterns be observed at what value of bifurcation loads? These
questions will be addressed in this paper.

This study aims at applying advanced numerical methods for
bifurcation analysis to typical cases of film/substrate system and
focuses on the post-buckling evolution involving multiple bifurca-
tions and symmetry-breakings, for the first time with a particular
attention on the effect of boundary conditions. For this purpose,
a 2D finite element (FE) model was previously developed for mul-
tiperiodic bifurcation analysis of wrinkle formation (Xu et al.,
submitted for publication). In this model, the film undergoing
moderate deflections is described by Föppl-von Kármán nonlinear
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elastic theory, while the substrate is considered to be a linear elas-
tic solid. Following the same strategy, we extend the work to 3D
cases by coupling shell elements to represent the film and block
elements to describe the substrate. Therefore, large displacements
and rotations in the film can be considered and the spatial distribu-
tion of wrinkling modes like 1D sinusoidal, checkerboard and her-
ringbone (see Fig. 1) could be investigated.

Surface instability of stiff layers on soft materials usually
involves strong geometrical nonlinearities, large rotations, large
deformations, loading path dependence, multiple symmetry-
breakings and other complexities, which makes the numerical res-
olution quite difficult. The morphological post-buckling evolution
and mode shape transition beyond the critical load are incredibly
complicated, especially in 3D cases, and the conventional numeri-
cal methods have difficulties in detecting all the bifurcation points
and associated instability modes on their evolution paths. To solve
the resulting nonlinear equations, continuation techniques give
efficient numerical tools to compute these nonlinear response
curves (Doedel, 1981; Allgower and Georg, 1990). In this paper,
we adopted the Asymptotic Numerical Method (ANM) (Damil
and Potier-Ferry, 1990, 1994; Cochelin et al., 1994, 2007) which
appears as a significantly efficient continuation technique without
any corrector iteration. The underlying principle of the ANM is to
build up the nonlinear solution branch in the form of relatively
high order truncated power series. The resulting series are then
introduced into the nonlinear problem, which helps to transform
it into a sequence of linear problems that can be solved numeri-
cally. In this way, one gets approximations of the solution path that
are very accurate inside the radius of convergence. Since few global
stiffness matrix inversions are required (only one per step), the
performance in terms of computing time is quite attractive. More-
over, as a result of the local polynomial approximations of the
branch within each step, the algorithm is remarkably robust and
fully automatic. Furthermore, unlike incremental-iterative meth-
ods, the arc-length step size in the ANM is fully adaptive since it
is determined a posteriori by the algorithm. A small radius of con-
vergence and step accumulation appear around the bifurcation and
imply its presence.

Detection of bifurcation points is really a challenge. Despite a
lot of progresses have been made using the Newton–Raphson
method, an efficient and reliable algorithm is quite difficult to be
established. Indeed, it would cost considerable computing time
in the bisection sequence and corrector iteration because of very
small step lengths close to the bifurcation. In the ANM framework,
a bifurcation indicator has been proposed to detect bifurcation

points (Boutyour, 1994; Vannucci et al., 1998; Jamal et al., 2000;
Boutyour et al., 2004). It is a scalar function obtained through
introducing a fictitious perturbation force in the problem, which
becomes zero exactly at the bifurcation point. Indeed, this indica-
tor measures the intensity of the system response to perturbation
forces. By evaluating it through an equilibrium branch, all the crit-
ical points existing on this branch and the associated bifurcation
modes can be determined.

This paper explores the occurrence and post-bifurcation evolu-
tion of 1D sinusoidal, checkerboard and herringbone mode in
greater depth. The paper is outlined as follows. In Section 2, a non-
linear 3D mechanical model of film/substrate system is developed.
Then the resulting nonlinear problem is resolved by the ANM
algorithm that is particularly efficient for computing the resulting
quadratic equations and the bifurcation analysis is performed in
Section 3. Results and discussion are given in Section 4, including
the onset and evolution of sinusoidal wrinkles, checkerboard
patterns and herringbone modes under different loading and
boundary conditions. Conclusions and perspectives are reported
in Section 5.

2. 3D mechanical model

We consider an elastic thin film bonded to an elastic substrate,
which can buckle under compression. Upon wrinkling, the film
elastically buckles to relax the compressive stress and the sub-
strate concurrently deforms to maintain perfect bonding at the
interface. In the following, the elastic potential energy of the sys-
tem, is considered in the framework of Hookean elasticity. The
film/substrate system is considered to be three-dimensional and
the geometry is as shown in Fig. 2. Let x and y be in-plane coordi-
nates, while z is the direction perpendicular to the mean plane of
the film/substrate. The width and length of the system are denoted
by Lx and Ly, respectively. The parameters hf ;hs and ht represent,
respectively, the thickness of the film, the substrate and the total
thickness of the system. Young’s modulus and Poisson’s ratio of
the film are denoted by Ef and mf , while Es and ms are the corre-
sponding material properties for the substrate.

The 3D film/substrate system will be modeled in a rather clas-
sical way, the film being represented by a thin shell model to allow
large rotations while the substrate being modeled by small strain
elasticity. Indeed, the considered instabilities are governed by non-
linear geometric effects in the stiff material, while these effects are
much smaller in the soft material. Since the originality of this
paper lies in the numerical treatment of multiple bifurcations,
we limit ourselves to this classical framework for the sake of con-
sistency with previous literatures. The large rotation framework
for the film has been chosen because of the efficiency of the asso-
ciated finite element. Note that the same choice of a shell with
finite rotations coupled with small strain elasticity in the substrate
had been presented for numerical reasons in Chen and Hutchinson
(2004). The application range of this model is limited by two small
parameters: the aspect ratio of the film hf =Lx;hf =Ly and the stiff-
ness ratio Es=Ef . In the case of a larger ratio Es=Ef , a finite strain
model should be considered in the substrate as in Hutchinson

Fig. 1. Schematics of wrinkling patterns: (a) sinusoidal mode, (b) checkerboard
mode, (c) herringbone mode (a periodic array of zigzag wrinkles).

Fig. 2. Geometry of film/substrate system.
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