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a b s t r a c t

Kinematic properties of tensegrity structures reveal that an ideal way of motion is by using their infini-
tesimal mechanisms. For example in motions along infinitesimal mechanisms there is no energy loss due
to linearly kinetic tendon damping. Consequently, a deployment strategy which exploits these mecha-
nisms and uses the structure’s nonlinear equations of motion is developed. Desired paths that are tangent
to the directions determined by infinitesimal mechanisms are constructed and robust nonlinear feedback
control is used for accurate tracking of these paths. Examples demonstrate the feasibility of this approach
and further analysis reveals connections between the power and energy dissipated via damping, infini-
tesimal mechanisms, speed of the motion, and deployment time.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Classical tensegrity structures (Fig. 1) are assemblies of flexible
elements, called tendons, and disjoint bars (Snelson, 1996). This
combination gives tensegrity structures a fascinating form, with
the disconnected bars apparently floating in a network of tendons.
The tensioned tendons appear to give integrity to the structure,
hence the acronym tensegrity (Sadao, 1996). Readers interested in
this concept’s evolution and extensions that include connected
bars and other rigid bodies may consult Juan and Tur (2008),
Skelton and DeOliveira (2009) or Sultan (2009a). In this article
the structures of interest are defined via key properties and
modeling assumptions.

The key defining property of tensegrity structures, identified by
early tensegrity researchers (Calladine, 1978; Pellegrino and
Calladine, 1986), is that they can achieve equilibrium configura-
tions under zero external actions (i.e. forces or torques) and with
all tendons in tension. This property is called prestressability and
these equilibrium configurations, prestressable configurations
(see Tibert and Pellegrino (2003a) for a review of methods to find
such configurations). An immediate consequence of prestressabili-
ty is that the structure is statically indeterminate at any prestres-
sable configuration, i.e. the equilibrium equations have multiple
solutions for the internal forces.

Another key property of classical tensegrities is that they have
kinematically indeterminate prestressable configurations with
internal infinitesimal mechanisms. A configuration is kinematically

indeterminate if infinitesimal displacements are possible with no
changes in the lengths of the structural members (Calladine,
1978). Such displacements are called infinitesimal mechanisms.
The adjective ‘‘internal’’ is sometimes used to emphasize the fact
that tensegrity infinitesimal mechanisms are intrinsic to the
structure and not due to effects such as rigid body motions, which
involve large displacements with no changes in the lengths of the
structure’s members (see Pellegrino and Calladine (1986) for
details on this topic). Note that, in general, i.e. not limiting the dis-
cussion to tensegrity, mechanisms lead to changes in the structural
member lengths that are at least of second order in terms of dis-
placements and are classified according to this order, culminating
with finite mechanisms, which result in zero changes in the
structural member lengths for large displacements, thus being
similar to rigid body motions in this respect (the interested reader
may refer to Pellegrino and Calladine (1986), Calladine and
Pellegrino (1991) or Vassart et al. (2000) and references therein).

The existence of mechanisms is a major advantage for struc-
tures which require change of configuration (e.g., morphing struc-
tures, robots, deployable structures, etc.). Indeed, mechanisms
enable configuration changes without modifications in the internal
member lengths. For infinitesimal mechanisms this is of course
valid for infinitesimal displacements while for finite mechanisms
it is valid even for large displacements. A structure with mecha-
nisms has increased ‘‘mobility’’ compared to structures without
mechanisms, making it more amenable to dynamic applications
which involve configuration changes. Clearly, this is true for any
structure with mechanisms, including articulated assemblies com-
posed only of bars. In structures with tendons and mechanisms,
the mechanisms provide another advantage for dynamic applica-
tions. Specifically for tensegrity, the energy dissipated via linearly
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kinetic tendon damping is zero in motions that occur along infini-
tesimal mechanisms. It can also be shown, using a simple approx-
imation, that the variation in the potential elastic energy of a
tensegrity structure when displacements along infinitesimal
mechanisms occur is small. More generally, i.e. not limiting the
discussion to tensegrity and infinitesimal displacements, if a struc-
ture with tendons has finite mechanisms the energy dissipated via
linearly kinetic tendon damping and the potential elastic energy
variation are both zero for large displacements along these mech-
anisms because tendon lengths do not change (of course the above
rationale assumes that tendon rest-lengths are constant).

The previous paragraph outlined major advantages mechanisms
provide for dynamic applications, especially for structures with
tendons like tensegrity, emphasizing that motions along mecha-
nisms are desired. However, kinematic analysis, which is used to
identify mechanisms, is basically a geometric study and by itself
cannot address the questions if such motions are feasible and
how they can be achieved. For this purpose, the dynamic equations
of motion must be employed. Furthermore, for large displacement
applications such as deployment, nonlinear dynamics equations
are required.

Nonlinear ordinary differential equations were used to model
tensegrity’s dynamics in a deployment strategy in Sultan and
Skelton (2003). In that work mechanisms were not exploited.
Instead, the system was controlled using tendons to maintain the
state space trajectory of the deployment process close to an equi-
librium manifold. The evolution of the structure was quasi-static,
facilitating satisfaction of structural integrity and collision avoid-
ance constraints. Sultan et al. (2002) also developed a non quasi-
static reconfiguration procedure which exploits the mathematical
structure of the nonlinear equations of motion and symmetrical
tensegrity configurations. Tendon control and, in some cases,
external torque control applied to a rigid element of the structure,
was used to achieve symmetrical motions. Working on other
tensegrity deployment problems, Tibert and Pellegrino (2002,
2003b) disputed tendon control claiming that it is technologically
complicated and proposed deployment using foldable/telescopic
struts. A disadvantage of this strategy is that the structure has slack
tendons until fully deployed. Fest et al. (2004) studied the potential
of telescopic struts in the shape control of a tensegrity structure
assuming quasi-static evolution. Motro et al. (2006) proposed
deployable tensegrity rings that can be assembled in pedestrian
bridges. Smaili and Motro (2007) investigated folding of tensegrity
systems by creating finite mechanisms. Finite mechanisms have
also been exploited in Rhode-Barbarigos et al. (2012) in a study
of ring modules (see also Rhode-Barbarigos et al. (2010)) for a
deployable footbridge, where the structure is deployed assuming
sufficient damping and quasi-static evolution. A key idea in using
finite mechanisms in tensegrity deployment is to ‘‘activate’’ these

mechanisms, for example by changing the lengths of telescopic
struts or tendons. The main disadvantage associated with this pro-
cedure is that instabilities are introduced when finite mechanisms
are created. These issues are amply described in Motro (2003)
Chapter 6.

As emphasized in the above, many successful deployment
methods are quasi-static. The structure’s generalized velocities
and accelerations are very small and the state space trajectory of
the deployment process is maintained close to an equilibrium
set. Quasi-static strategies are very effective when damping is large
because it naturally facilitates small accelerations and velocities.
This explains the success of quasi-static deployment procedures
in the presence of considerable damping. However, for many appli-
cations one would actually like to reduce damping because of its
detrimental effects. Damping is a thermodynamically irreversible
process which may result in large energy dissipation and non-
desirable thermal effects. On one hand, it is well known that these
effects are particularly damaging for tendons composed of certain
materials such as elastomers. On another hand, such materials may
actually be required, especially in deployment applications. This is
so because deployment requires large geometry changes that may
easily translate into the requirement that tendons tolerate large
strain variations, as it will be revealed by examples included in this
article. The requirement for large strains is fulfilled by tendons
made of elastomers. Therefore, developing deployment strategies
in which the energy dissipated via tendon damping is small is
important. Also, quasi-static deployment strategies are inherently
slow because they require small velocities and accelerations that
usually result in long deployment times. This can be reduced by
solving a constrained optimization problem aimed at minimizing
the deployment time, which is not an easy task (see Sultan and
Skelton (2003) for such an example).

This article directly addresses the last two issues. A fast deploy-
ment procedure, specifically focused on achieving small energy
dissipation via tendon damping, is developed. Because in motions
along infinitesimal mechanisms the energy dissipated via linearly
kinetic tendon damping is zero, a natural solution is to use these
mechanisms for deployment. For this purpose, desired paths that
are tangent to the directions determined by infinitesimal mecha-
nisms are created. The requirement of quasi-static motion is elim-
inated and the desired paths are not constrained to be close to an
equilibrium set. The amplitude of the structure’s motion is also not
restricted to small variations around equilibria, therefore nonlinear
ordinary differential equations are used to describe the structure’s
dynamics. Furthermore, robust nonlinear feedback controllers are
designed to guarantee that the state space trajectories of the
deployment process, called actual paths, track the desired paths
in the presence of uncertainties. These controllers use only torques
and eventually forces applied to the bars, which are technologically
easy to implement. Because the actual paths follow closely trajec-
tories that are tangent to infinitesimal mechanisms it is expected
that the energy dissipated via tendon damping is small. Examples
reveal the feasibility of the procedure on a tensegrity simplex as
well as on a much more complex tensegrity tower. Correlations
between the power dissipated via damping, the speed of the
motion, and the infinitesimal mechanisms, as well as the influence
of the deployment time on the energy dissipated via damping are
analyzed. Issues related to material selection, structural integrity,
robustness of the design are also amply discussed.

2. Mathematical modeling, prestressability, mechanisms

2.1. Modeling assumptions

The bars are stiff in comparison with the tendons and the mass
of each bar is large relative to the mass of each tendon. Therefore,

Fig. 1. A tensegrity sculpture by Kenneth Snelson.
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