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a b s t r a c t

A stress-based variational model is developed to study stiffness reduction and stress distribution in
angle-ply laminates ½h2l=h1m=90n�s with matrix cracks. The inter-laminar shear stresses between 90�
and h

�

1 -plies and between h�1 and h�2-plies, respectively, are assumed to be in the form of general func-
tions. The normal stresses rx in h�1-plies and h�2-plies are introduced with partition coefficient k for solv-
ing the problem of statically indeterminate boundary because the normal stresses rx cannot be obtained
by using the condition of statics due to the loads at the boundary for each uncracked layer. This leads to
expressions derived from equilibrium equations and boundary conditions for stress components in terms
of the general functions and the partition coefficient. The governing equations for the general functions
and the partition coefficient are derived by using a variational approach with the principle of minimum
complementary energy. As an application, reduction of Young’s modulus for different laminates is eval-
uated and compared with available experimental results. Distributions of in-planar and inter-laminar
stresses are also presented by means of the finite difference method. The results show that the present
approach is suitable to analyze stiffness reduction for multi-angle-ply laminates with transverse cracks
in 90� layer.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

General laminates are made of unidirectional fiber layers ori-
ented at different angles. It is load or cyclic accumulation can
induce matrix cracking in some layers. Early experimental data
for laminated composites with lay-up ½0m=90n�s have shown that
matrix cracks in 90� layer reduce stiffness and change Poisson’s
ratio. Many researchers have presented a lot of approaches to
study the properties of the damage due to the matrix cracking in
the laminates, such as Shear-lag model (Reifsnider et al., 1983;
Highsmith and Reifsnider, 1982; Katerelos et al., 2005; Amara
et al., 2005; Berthelot et al., 1996; Bouiazza et al., 2007; Tounsi
et al., 2005; Berthelot and Le Corre, 1999) and variational analysis
(Hashin, 1987; Rebière et al., 2001; Vinogradov and Hashin, 2005).
As the early shear-lag model was generally prone to large errors
when comparing with experimental data, several modified models
have been proposed based on the assumption of displacement in
the 90� plies by Katerelos et al. (2005), Amara et al. (2005),
Berthelot et al. (1996), Bouiazza et al. (2007) and Tounsi et al.
(2005). Using the progressive shear models and the parabolic anal-
ysis model, Berthelot and Le Corre (1999) showed that the results

for progressive shear model are in good agreement with simulated
results obtained by the finite element method. The research of
Tounsi and Amara (2005) shows that the modified shear-lag model
can further be used to analyze stiffness degradation in aged cross-
ply laminate with transverse cracks under hygrothermal condition.
For more accurate stress analysis, a variational approach based on
the principle of minimum complementary or potential energy is
developed by Hashin (1987) who obtained the minimum average
threshold of stiffness degradation for laminates ½0m=90n�s.
Highsmith and Reifsnider (1982) studied the stiffness-reduction
mechanisms in composite laminates, but there are large errors
between Poisson’s ratio in theoretical results and experimental
observations in their work In addition, Rebière et al. (2001) showed
that there are large errors in the inter-laminar stresses calculated
with some models and approaches, such as variational approach
used by Hashin (1987), Perturbation stress functions of SUPPRIMER
with a parabolic variation (model 1) and a second order polynomial
(model 2) and finite-element method. The variational analysis was
utilized by Vinogradov and Hashin (2005) to estimate the stress
fields in a cracked laminate subjected to an applied load and a tem-
perature change. Their work showed that the probability density
function for the specific surface energy requires modification when
applying to different laminates. Huang et al. (2011) obtained an
exact solution for stresses in cracked laminates of ½hm=90n�s with
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consideration of the series expansion form of sinusoidal functions
for inter-laminar shear stresses in 90� and 0� plies. Meanwhile, the
results of interlaminar stress show that delamination occurs near
the splitting location.

Mechanical properties of ½hm=90n�s laminates with transverse
cracks have been reported in many articles. Zhang et al. (1992)
and Kashtalyan and Soutis (2002) discussed stiffness degradation
in angle-ply laminates with matrix cracks based on a 2-dimen-
sional shear-lag model. Nairn and Hu (1992) used a new 2-dimen-
sional stress analysis to calculate total strain energy, effective
modulus and energy release rate for ½ðSÞ=90n�s laminates having
matrix cracks and delamination, and Farrokhabadi et al. (2011)
used a generalized micromechanical approach to analyze stress
distributions and energy release rate of laminates with matrix
cracking. Using shear-lag model and variational model, Joffe and
Varna (1999), Joffe et al. (2001) and Amara et al. (2006) analyzed
stiffness reduction in laminates caused by cracks in 90� layers.
Also, Pradhan et al. (1999) used a 3-D finite-element method to
evaluate the degradation of stiffness of ½hm=90n�s laminates with
transverse cracking in 90� ply. Further, Zhang and Minnetyan
(2006) examined theoretically the degradation of stiffness and
the energy release rate by using a displacement-based variational
approach based on the hypothesis of displacement function of
sub-laminates for ½hm=90n�s laminates with transverse cracking
and local delamination. In addition, Vinogradov and Hashin
(2010) used the principle of minimum complementary energy to
analyze stiffness reduction of angle-ply laminates with matrix
cracks in middle laminate.

The above research models and approaches are mainly used to
analyze ½hm=90n�s laminates with matrix defects, but the effects of
shear stress acting in the plane of each ply are omitted when using
the average properties of �h plies to analyze the ½�h=90n�s lami-
nates. Tong et al. (1997) show that in-planar stresses for uncracked
laminas of þ45� ply and �45� ply are different in their finite ele-
ment analysis. Since there is the shear stress in each ply, this
makes it difficult to analyze in greater depth. Zhang and
Herrmann (1999) proposes a theoretical model based on effective
in-plane stresses and strains as well as equivalent constraint model
(ECM) for the prediction of the elastic properties of a general sym-
metric laminate containing multilayer matrix cracks, but it is diffi-
cult to analyze the inter-laminar stresses for the laminates with
matrix cracks. Li and Hafeez (2009) uses the principle of minimum
complementary energy to analyze the stress of multi-angle ply
laminates with matrix cracks without considering the effects of
shear stress acting in the plane of each ply. In this work, inter-lam-
inar shear stresses are assumed to be in the form of general func-
tions of ½h2l=h1mm=90n�s laminates, which leads to general
expressions derived from equilibrium equations and boundary
conditions for stress components in the laminate. Based on the
principle of minimum complementary energy, the governing equa-
tions subjected to the condition of statically indeterminate bound-
ary are derived for the general functions and partition coefficient.
By means of the finite difference method, reduction of Young’s
modulus for various glass/epoxy laminates are evaluated and com-
pared with available experimental results. Distributions of in-pla-
nar and inter-laminar stresses are also presented in this work.
The present approach is suitable for analysis of damage evolution
about multi-angle ply laminates with transverse cracks in 90�
layer.

2. Fundamental equations, boundary conditions and the form
of solution

Early experimental observations (Highsmith and Reifsnider,
1982) showed that as crack density increases, the transverse cracks

in 90� layers are evenly spaced along the length of the laminates,
and the cracks extend across the entire width and occupy the
whole thickness of 90� layers. A characteristic cracked element in
composite laminates with lay-up ½h2l=h1mm=90n�s under prescribed
tension rx is shown in Figs. 1 and 2. By virtue of symmetry, the half
(z P 0) of the cracked element is analyzed. In the cracked element,
h ¼ t1 þ t2 þ t3, where ti ¼ nit0 for i = 1, 2, 3 and n1 ¼ n, n2 ¼ m,
n3 ¼ l, and t0 is the thickness of a single layer. The superscripts
(1), (2) and (3) represent the 90�, h�1 and h�2 layers, respectively.
For the statically indeterminate problem, layers (2) and (3) are sub-
jected to tension h

t2
rxk and h

t3
ð1� kÞrx, respectively, at the bound-

ary. k is unknown partition coefficient. The normal stresses of (2)
and (3) layer at the boundary have

t2rð2Þx

��
x¼L1
þ t3rð3Þx

��
x¼L1
¼ hrx

Without body forces, equilibrium equations are given as

@rx
@x þ

@sxy

@y þ
@sxz
@z ¼ 0

@sxy

@x þ
@ry

@y þ
@syz

@z ¼ 0

@sxz
@x þ

@syz

@y þ
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@z ¼ 0

8>>>><
>>>>:

ð2:1Þ

and boundary conditions are expressed by

rð1Þx

��
x¼�L1

¼ 0; sð1Þxz

��
z¼0 ¼ sð1Þyz

���
z¼0
¼ 0

rð3Þz

��
z¼h ¼ 0; sð3Þxz

��
z¼h ¼ sð3Þyz

���
z¼h
¼ 0

sðiÞxy

���
x¼�L1

¼ 0; sðiÞxz

��
x¼�L1

¼ 0; ði ¼ 1;2;3Þ

t2rð2Þx

��
x¼�L1

þ t3rð3Þx

��
x¼�L1

¼ hrx

ð2:2Þ

When the laminate is subjected to uniaxial tension in x direc-
tion, the resultants per unit length should be Ny ¼ 0 and Nxy ¼ 0,
which can be reduced toZ t1

0
rð1Þy dzþ

Z t1þt2

t1

rð2Þy dzþ
Z h

t1þt2

rð3Þy dz ¼ 0 ð2:3Þ

Z t1

0
sð1Þyx dzþ

Z t1þt2

t1

sð2Þyx dzþ
Z h

t1þt2

sð3Þyx dz ¼ 0 ð2:4Þ

Traction continuity at the interfaces requires

sð1Þzx

��
z¼t1
¼ sð2Þzx

��
z¼t1

; sð2Þzx

��
z¼t1þt2

¼ sð3Þzx

��
z¼t1þt2

sð1Þzy

���
z¼t1

¼ sð2Þzy

���
z¼t1

; sð2Þzy

���
z¼t1þt2

¼ sð3Þzy

���
z¼t1þt2

rð1Þz

��
z¼t1
¼ rð2Þz

��
z¼t1

; rð2Þz

��
z¼t1þt2

¼ rð3Þz

��
z¼t1þt2

ð2:5Þ

Fig. 1. Geometry of cracked element.
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