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a b s t r a c t

The possibility to establish clear relationships between the results of the Generalized Beam Theory (GBT)
and those of the classical beam theories is a crucial issue for a correct theoretical positioning of the GBT
within the other existing beam theories as well as for the application of the GBT in the current engineer-
ing practice. With this in mind, the recovery of classical and non-classical beam theories within the
framework of the GBT is presented in this paper. To this purpose, a new formulation of the GBT with shear
deformation is conceived. Particularly, the formulation recently proposed by the authors is here modified
by introducing new definitions of the kinematic parameters and of the generalized deformations, and
extended to the dynamic case. Firstly, it is shown that a suitable choice of the flexural deformation modes
allows recovering the Vlasov beam theory, both with and without shear deformation. Also, the analytical
solution of the non-uniform torsion problem with shear deformation is given. Then, the recovery of the
Capurso beam theory using the nonlinear warping deformation modes is illustrated.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled beams are used in a broad variety of structures,
ranging from the aeronautical to the civil engineering. Accordingly,
much research has been devoted to the development of effective
analysis tools, that combine easy usage and good predictive capa-
bilities, to evaluate their structural behavior. The first important
contribution for the analysis of thin-walled beams was the well-
known theory developed by Vlasov (1961). Later, Capurso
(1964a,b, 1984) generalized the Vlasov theory by introducing the
shear deformability along the wall midline. In particular, this was
achieved by enriching the warping description, while keeping null
in-plane deformation of the cross-section, as in the Vlasov beam.
Then, the concept of generalized warping functions has been used
further by many authors (see, for example, Bauchau, 1985; De
Lorenzis and La Tegola, 2005; Genoese et al., 2014; Ferradi and
Cespedes, 2014). On the other hand, in the 80s, Schardt (1989,
1994) proposed the Generalized Beam Theory (GBT), which has
been proven to consistently account for cross-section distortion
along with the classical kinematics of axial displacement, bending
and torsional rotation in a comprehensive fashion. The fundamen-
tal idea of the GBT is to assume the displacement field of the beam

as a linear combination of predefined cross-section deformation
modes multiplied by unknown functions dependent on the beam
axial coordinate, called kinematic parameters or generalized dis-
placements. From its original form, many authors have contributed
to the improvement of the GBT by extending it beyond its original
formulation for open unbranched sections (Dinis et al., 2006;
Silvestre, 2007, 2008; Goncalves et al., 2009), by adding geometric
nonlinear effects (Davies et al., 1994; Silvestre and Camotim,
2003a; Camotim et al., 2010; Silva and Silvestre, 2007; Silva
et al., 2010), by developing beam elements based on semi-analyt-
ical solutions (Andreassen and Jonsson, 2013), or by presenting
new formulations for the dynamic analysis of open-section mem-
bers subjected to initial perturbations or acting loads (Bebiano
et al., 2013). Moreover, an interesting application of the GBT to
analyze cold-formed roof systems has been presented by Braham
et al. (2008), an effective equlibrium-based procedure for the
reconstruction of the three-dimensional stresses in GBT members
by de Miranda et al. (2014), and the discussion of analogies
between the GBT and the constrained Finite Strip Method by
Adany et al. (2009) and Silvestre et al. (2011).

Recently, a formulation of the GBT for the elastic–plastic analyses
of thin-walled members experiencing arbitrary deformations and
made of non-linear materials has been developed (Abambres et al.,
2013, 2014a) and used for the modal decomposition of equilib-
rium/collapse configurations in the context of an inelastic member
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analysis (Abambres et al., 2014b). Moreover, a GBT-based method
capable of identifying the modal participation of the fundamental
deformation modes from a general buckling mode determined by
using the Finite Element Method has been presented by Nedelcu
and Cucu (2014).

The selection of the cross-section deformation modes (usually
referred to as cross-section analysis) has received extensive atten-
tion in the research community over the years. On this regard, in
the spirit of the semi-variational method, an interesting approach
that reverses the classical methodology of GBT cross-section
analysis has been proposed by Ranzi and Luongo (2011): firstly
an in-plane analysis is carried out by solving a dynamic eigenvalue
problem relevant to an inextensible planar frame having the shape
of the cross-section middle line, then the warping is evaluated by
enforcing the Vlasov unshearability condition. Recently, an exten-
sion of this dynamic approach to include also non-conventional
(extension and shear) modes has been presented by Piccardo
et al. (2013) and a variant, based on a new quadratic functional,
by Piccardo et al. (2014).

In the GBT literature, much attention has also been devoted to the
shear deformability (Silvestre and Camotim, 2003b, 2004, 2013; de
Miranda et al., 2013). In particular, a new formulation of the GBT that
coherently accounts for the shear deformation has been recently
presented by de Miranda et al. (2013). Guaranteeing a coherent
matching between bending and shear strain components of the
beam, the new formulation allows to clearly identify the classical
degrees of freedom of the beam, an important issue to develop geo-
metrically nonlinear formulations based on corotational approaches
(Zagari et al., 2013; Garcea et al., 2009, 2012).

Indeed, notwithstanding the great amount of literature on GBT, in
the author’s opinion there is still a need for a proper theoretical posi-
tioning of the GBT within the framework of the other existing beam
theories. This would allow to establish clear relationships between
the GBT results and those of the classical beam theories, a crucial
issue to apply the GBT in the current engineering practice. An inter-
esting early attempt in this direction, limited to the unshearable Vla-
sov theory, was presented by Silvestre and Camotim (2002). With
this in mind, the recoveryofclassicaland non-classicalbeamtheories
within the framework of the GBT is presented in this paper. The start-
ing point is the shear deformable GBT presented by de Miranda et al.
(2013), here properly reformulated by introducing different defini-
tions of the kinematic parameters and of the generalized deforma-
tions, and extended to the dynamic case. In particular, firstly it is
shown how it is possible to reduce the new GBT formulation to the
standard shear undeformable GBT. Then, it is shown that a suitable
choice of the deformation modes allows to recover the Vlasov beam
theory, both with and without shear deformation. On this regard, the
analytical solution of the non-uniform torsion problem with shear
deformation is given and an example discussing the influence of
the shear deformability is presented. Finally, the recovery of the
Capurso beam theory using the nonlinear warping deformation
modes is illustrated.

The paper is organized as follows. The kinematics of the new
GBT is presented in Section 2 and the complete formulation of
the GBT for the flexural deformation modes in Section 3. The
reduction of the present shear deformable GBT to the classical
shear undeformable one is presented in Section 4. Section 5 is
devoted to the recovery of the Vlasov beam theory. The GBT formu-
lation for nonlinear warping modes is presented in Section 6 and
the recovery of the Capurso beam theory in Section 7. Some final
considerations end the paper.

2. Kinematics

The GBT can be viewed as a one-dimensional theory deduced
from a parent three-dimensional theory basing on some kinemat-

ical ansatzs. In particular, the displacement field of the beam is
assumed as a linear combination of predefined cross-section defor-
mation modes multiplied by generalized displacements that
depend on the beam axial coordinate. Thus, at the generic time t,
the following displacement field is assumed for the generic ith wall
of the cross-section (see Fig. 1):

dnðs; z; tÞ ¼ wðsÞvðz; tÞ; ð1Þ
dsðn; s; z; tÞ ¼ nðs;nÞvðz; tÞ; ð2Þ
dzðn; s; z; tÞ ¼ xðs;nÞwðz; tÞ; ð3Þ

where dn is the displacement orthogonal to the wall midline, ds is
the displacement tangent to the wall midline, dz is the displacement
in the beam axial direction, w; n and x are row matrices collecting
the assumed cross-section deformation modes (depending only on s
and n), and v and w are vectors that collect the unknown kinematic
parameters (depending only on z and t). In accordance with the
hypothesis that the generic wall behaves as a Kirchhoff plate,
cross-section deformation modes n and x are assumed to depend
linearly on n in the form:

nðn; sÞ ¼ lðsÞ � n�wðsÞ; xðn; sÞ ¼ uðsÞ � nwðsÞ; ð4Þ

where l and u are predefined shape functions. Hereinafter, ð Þ
�
; ð Þ0

and ð Þ
�

denote the derivatives with respect to the s; z and n coordi-
nates, respectively. It can be easily verified that, by a suitable redef-
inition of the generalized displacements w, the above kinematics
coincides with that proposed by de Miranda et al. (2013).

Eqs. (1)–(3) can be recast in the following matrix form:

dðn; s; z; tÞ ¼ Uðs;nÞuðz; tÞ; ð5Þ

where:

d ¼
dn

ds

dz

264
375; U ¼

w 0
n 0
0 x

264
375; u ¼

v
w

� �
: ð6Þ

Strains can be computed from Eqs. (1)–(4) by means of the three-
dimensional compatibility equations yielding enn ¼ 0; csn ¼ 0 and:

eðn; s; z; tÞ ¼ Eðs;nÞeðz; tÞ; ð7Þ

where

e ¼

ess

ezz

czs

czn

26664
37775; E ¼

�n 0 0 0
0 x 0 0
0 0 �2n�wþ �uþ l 1

2 ðl� �uÞ
0 0 0 w

266664
377775 ð8Þ
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Fig. 1. Thin-walled cross-section.
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