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a b s t r a c t

Large-scale thin-walled structures with a low weight-to-stiffness ratio provide the means for cost and
energy efficiency in structural design. However, the design of such structures for crash and impact resis-
tance requires reliable FE simulations. Large shell elements are used in those simulations. Simulations
require the knowledge of the true stress–strain response of the material until fracture initiation. Because
of the size effects, local material relation determined with experiments is not applicable to large shell ele-
ments. Therefore, a numerical method is outlined to determine the effect of element size on the macro-
scopic response of large structural shell elements until fracture initiation. Macroscopic response is
determined by introducing averaging unit into the numerical model over which volume averaged equiv-
alent stress and plastic strain are evaluated. Three different stress states are considered in this investiga-
tion: uniaxial, plane strain and equi-biaxial tension. The results demonstrate that fracture strain is highly
sensitive to size effects in uniaxial tension whereas in plane strain or equi-biaxial tension size effects are
much weaker. In uniaxial and plane strain tension the fracture strain for large shell elements approaches
the Swift diffuse necking condition.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled structures with a low weight-to-stiffness ratio pro-
vide the means for cost- and energy efficiency in structural design.
In the quest for efficiency, the structural safety of lightweight shell
structures has become more important as a result of the increased
societal awareness regarding accidents and structural failure. This
has led to designs that rely on FE simulations as full-scale
experiments of such events are impossible to conduct. Simulations
involving impact, crush and crashworthiness however, require the
knowledge of true stress–strain behavior of the material until
fracture initiation.

Recent experimental–numerical studies, e.g. (Zhang et al., 1999;
Gruben et al., 2012; Dunand and Mohr, 2010; Tardif and Kyriakides,
2012; Ghahremaninezhad and Ravi-Chandar, 2012), clearly show
that an accurate stress–strain response and equivalent plastic strain
to fracture initiation �ef , i.e. the fracture strain, are a pre-condition
for adequate FE solution in problems involving strain localization
and ductile fracture. For the sake of brevity, notation ‘‘fracture
strain’’ is used throughout the paper interchangeably with the term
‘‘fracture initiation strain’’. In these studies the stress–strain
relation and the fracture strain are determined using a certain

experimental length scale. This experimental length scale defines
the element size used in the simulations; see e.g. (Hogström
et al., 2009; Ehlers and Varsta, 2009). In other words, the FE solution
is mesh size sensitive, which accuracy depends on the chosen frac-
ture strain. In the failure analysis of materials and structures, such
size effects are an important issue (Bazant, 2000; Fleck and
Hutchinson, 1993). In large-scale structural analysis, for practical
reasons, the mesh size is usually several orders of magnitude higher
than the experimental length scale. For instance, the recommended
element aspect ratio in the analysis of large structures is Le/t > 5,
where Le is the element length and t is the plate thickness
(Hogström and Ringsberg, 2012). In contrast, the aspect ratio corre-
sponding to the experimental length scale is usually less than 1.
Hence, the consistency between the experimental length scale
and FE mesh size is lost.

The engineering approach to bridging the two scales is the most
intuitive. By introduction of ‘‘virtual extensometer’’, which repre-
sents various experimental length scales in a standard tensile test,
fracture strain can be determined for larger elements. Stress on
the other hand cannot be directly measured, which is why it is cal-
culated based on the minimum cross-sectional area of the specimen
independent of the experimental length scale. The true stress–strain
curve until fracture obtained this way represents the macroscopic
response of large structural shell elements until fracture initiation.
Alternatively, for the one-dimensional uniaxial tension case, a
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closed-form analytical expression of the element size to the fracture
strain can be derived (Li and Karr, 2009). In any case, the power-law
type relationship that relates fracture strain to element size is
denoted as Barba’s law. Fracture criterion that is based on the criti-
cal equivalent plastic strain and is scaled with the Barba’s law is
referred to as shear criterion. This fracture criterion is employed
most notably in the analysis of large-scale structural components
(Simonsen and Törnqvist, 2004; Alsos et al., 2009; Hogström and
Ringsberg, 2013; Ehlers, 2010) and full-size collision and crashwor-
thiness simulations of ship structures, e.g. (Naar et al., 2002;
Yamada et al., 2005; Kõrgesaar and Ehlers, 2010; Samuelides,
2012; Hogström and Ringsberg, 2012) to name a few. However,
the shear criterion is strictly valid only for uniaxial tension. It is
known that the fracture ductility is a strong function of the stress
state or the stress triaxiality, g ¼ rh=�r, where the hydrostatic and
von Mises stress are denoted by rh and �r, respectively. Stress
state-dependent failure in metals was first observed by
McClintock (1968), Rice and Tracey (1969), Hancock and
Mackenzie (1976), Gurson (1977) and Johnson and Cook (1985)
and in more recent experimental studies, e.g. (Bao and Wierzbicki,
2004; Barsoum and Faleskog, 2007; Haltom et al., 2013;
Hopperstad et al., 2003). An example of the influence of triaxiality
on the fracture strain in plane stress condition is shown for a steel
material in Fig. 1(a). The results of the tensile experiments by
Dunand and Mohr (2010) with different notch radii in Fig. 1(b)
clearly indicate that the fracture strain is also strongly dependent
on the strain path. The importance of stress triaxiality on the frac-
ture strain is also recognized by some of the fracture criteria
employed in large-scale structural analysis, namely the Bressan–
Williams–Hill (BWH) instability and the Rice–Tracey–Cockcroft–
Latham (RTCL) damage criterion described by Alsos et al. (2008)
and Törnqvist (2003), respectively. However, the BWH-criterion
neglects the size effects completely, as it is argued that size effects
appear after local necking. The RTCL criterion is adjusted for differ-
ent mesh densities based on the fracture strain determined with the
uniaxial tension test, i.e., with a Barba’s law. Walters (2013) has pro-
posed adjusting the fracture strain on both the mesh size and stress
state. However, evidence for such an adjustment is still lacking as no
experimental or numerical results were presented.

To fill this gap, we introduce an alternative numerical approach
to bridge the local and global scale and thereby describe the size
effects at different stress states. The numerical stress–strain
response until fracture in global scale, referred to as macroscopic
response, is obtained as the volume averaged stress–strain
response of a finite averaging unit (AU) that is introduced into
the numerical model or specimen. The specimen is imposed to
stress states corresponding to multi-axial tension condition: uni-
axial tension (UAT, g = 1/3), plane strain tension (PST g ¼ 1=

ffiffiffi
3
p

)

and equi-biaxial tension (EBT, g ¼ 2=
ffiffiffi
3
p

). Size effects due to the
bending are not considered in the present study. Thereby, the com-
bined effect of size and stress state on the fracture strain is estab-
lished. Size of the averaging unit corresponds to the large
structural shell elements used in the analysis of large structures
such as ships. Hence, the approach described is fundamentally an
extension of the engineering approach used to determine Barba’s
law from tensile tests to multi-axial stress states. In contrast to
engineering approach described above, ‘‘averaging unit’’ intro-
duced to numerical model facilitates the comprehensive analysis
of all the field quantities, including the stress and strain state,
and their influence on the true stress–strain response and the frac-
ture strain.

2. Approach

2.1. Necking instability

In general, a ductile fracture in sheet metal is preceded by a loss
of stability, (Marciniak and Kuczyński, 1967; Hutchinson and
Neale, 1979; Xue, 2010). The loss of stability reveals itself during
the deformation process as high strain and stress gradients appear
over a limited region of the sheet, while in the exterior zones some
unloading and softening can take place. This type of plastic flow
localization is responsible for the size effects investigated in this
study. Depending on the stress state, the intensity of the plastic
flow and the size of the localization zone vary. Thereby, the inten-
sity of the size effects in different stress states can vary as well.
Specifically, we consider two types of instabilities: diffuse and
localized necking. Diffuse necking, which is characteristic of flat
tensile specimens and uniaxial tension (g = 1/3), takes place over
the width of the gage section as shown in Fig. 2(a). The amount
of diffuse necking is here quantified as the width ratio at the end
of the gage section (w1) vs. the width in the middle section (w2).
Diffuse necking is followed by localized necking, or severe thinning
in the middle of the gage section. In metals the width of the local
neck is roughly equal to the thickness of the sheet (Hu et al.,
2002). The amount of thinning is quantified with the thickness
ratio of t1/t2 as shown in Fig. 2(a)–(c). This ratio starts to increase
already in the diffuse necking stage, but the localized necking trig-
gers a steep growth of the ratio. Therefore, the thickness ratio is
associated with the developing local neck. In plane strain
(g ¼ 1=

ffiffiffi
3
p

) and equi-biaxial tension (g = 2/3), geometric con-
straints obviate the diffuse necking, meaning that only localized
necks appear in the thickness direction. Geometric constraint in
plane strain stems from the boundary conditions, which restrict
the plate edges from pulling in as shown in Fig. 2(b), and in
equi-biaxial tension from the loading as shown in Fig. 2(c), which

Fig. 1. Influence of stress triaxiality on fracture ductility for two advanced high-strength steels. (a) Fracture envelope from Luo and Wierzbicki (2010) and (b) triaxiality
history until fracture initiation for three different specimens (Dunand and Mohr, 2010).
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