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This paper presents the first application of peridynamics theory for crystal plasticity simulations. A state-
based theory of peridynamics is used (Silling et al., 2007) where the forces in the bonds between particles
are computed from stress tensors obtained from crystal plasticity. The stress tensor at a particle, in turn,
is computed from strains calculated by tracking the motion of surrounding particles. We have developed
a quasi-static implementation of the peridynamics theory. The code employs an implicit iterative
solution procedure similar to a non-linear finite element implementation. Peridynamics results are
compared with crystal plasticity finite element (CPFE) analysis for the problem of plane strain compression
of a planar polycrystal. The stress, strain field distribution and the texture formation predicted by CPFE and
peridynamics were found to compare well. One particular feature of peridynamics is its ability to model
fine shear bands that occur naturally in deforming polycrystalline aggregates. Peridynamics simulations
are used to study the origin and evolution of these shear bands as a function of strain and slip geometry.
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1. Introduction

Efficient micro-scale modeling tools are needed to compute
microstructure-dependent properties of advanced structural alloys
used in aerospace, naval and automotive applications. Integrated
Computational Materials Engineering (ICME) (Allison et al., 2006)
is an emerging paradigm that emphasizes integration of micro-
scale material models with engineering analysis of products and
processes so as to enable design of microstructurally tailored mate-
rials. One such model for metallic materials is based on finite
element analysis of polycrystalline aggregates via crystal plasticity
theory (Harren and Asaro, 1989; Bronkhorst et al., 1992; Becker
and Panchanadeeswaran, 1995; Beaudoin et al., 1996; Sarma
et al,, 2002; Sundararaghavan and Zabaras, 2008). Here, mechani-
cal properties of aggregates of grains are analyzed by discretizing
the grains into finite elements and assigning crystallographic
orientation to grains based on microdiffraction measurements
(Qidwai et al., 2009). Deformation mechanisms are modeled using
constitutive laws that consider crystallographic slip and reorienta-
tion of grains (texturing).

One particular drawback of standard finite element methods for
crystal plasticity is observed during modeling of plastic localization
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zones. Such localization naturally occurs in deforming polycrystal-
line aggregates in the form of fine shear bands (Harren et al., 1988).
The strains in these bands have been recently measured using
micro-scale digital image correlation (DIC) (e.g. Kammers and
Daly, 2013, see Fig. 1). In standard finite elements, the element size
determines the size of shear bands (Anand and Kalidindi, 1994).
Various enhancements of finite element method have been studied
in the past to address the issue of mesh dependency. Early
approaches involved development of traction-separation softening
laws whose slope was made to depend on the element size (Oliver,
1989). In the limiting case of zero element size, the localization
appears as a sharp discontinuity. Later approaches such as the
extended finite element methods (X-FEM, Samaniego and
Belytschko, 2005) or variational multiscale methods (VMM,
Armero and Garikipati, 1996) directly represented discontinuities
on coarse elements by enriching the finite element interpolations
using fine-scale strain functions.

Another approach employs models that possess an intrinsic
characteristic length scale. Examples of these ideas are non-local
constitutive models (Bazant et al., 1984; Ghosh et al., 2013, 2014;
Sundararaghavan and Waas, 2011), higher-gradient models
(Coleman and Hodgdon, 1987) and more recently, peridynamic
models (Silling, 2000). In peridynamics, the continuum domain is
represented as a set of interacting particles. A state-based theory
of peridynamics developed in Silling et al. (2007) formulates the
forces between particles based on stress tensors obtained from con-
tinuum formulations (e.g. crystal plasticity). The stress tensor at a
particle, in turn, is computed from strains calculated by tracking
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Fig. 1. Tensile strain field in a Titanium alloy microstructure as experimentally seen using micro-scale digital image correlation (Kammers and Daly, 2013, Prof. S. Daly,
personal communication). Strains are seen to localize into shear bands within select grains.

the motion of surrounding particles. Using an integral form of the
linear momentum balance equation, the method can directly model
sharp displacement discontinuities (Agwai et al., 2011). This paper
presents the first application of state-based peridynamic theory for
crystal plasticity simulations. Current implementations of peridy-
namic state theory (Warren et al., 2009) employ explicit dynamic
solution procedures that require small time steps for convergence.
In this work, we employ a quasi-static implementation of the the-
ory (Breitenfeld et al., 2014) and have extended it towards solving
non-linear deformation problems. The solution procedure uses
Newton-Raphson iterations similar to a non-linear finite element
implementation. Thus, quasi-static peridynamics results can be
quantitatively compared to conventional quasi-static crystal
plasticity finite element simulations. Sections 2 and 3 of this paper
provides the governing equations of the peridynamics theory and
its numerical implementation. The crystal plasticity constitutive
model is given in Section 4. In Section 5, we compare the method
with crystal plasticity finite simulations and demonstrate the abil-
ity of peridynamics model to capture fine shear bands in grains. In
the final section, conclusions and future work are discussed.

2. Peridynamics theory

In peridynamics theory, a material point x in the reference con-
figuration B is assumed to interact with neighboring points x'
(located within a finite radius ¢) along a bond defined by the vector
X' — x. The position of particle ¥ in the current configuration is
denoted by y = x + u,, where u, denotes the displacement of par-
ticle x. The kinematics of peridynamics theory is shown in Fig. 2.

The equation of balance of linear momentum at time t for the
point ¥ under quasi-static loading conditions is given by (Silling
et al., 2007)

L(x)+b(x)=0 VxehB,

L) = [ {Ti(x )~ Tie] ) Vs M
where b is the body force, B, is a spherical neighborhood of radius ¢
centered at x at time ¢t = 0. The term T[x](x' — x) denotes the force
(per unit volume squared) on material point ¥ operating on the
bond &' — x. The value of T can be obtained from the first Piola-
Kirchhoff stress, P, computed at point ¥ from any conventional
constitutive model (e.g. of the form P = F(F), where F is the defor-
mation gradient) as follows (Silling et al., 2007):

T[x](x —x) = wPK™'(x' — X) 2)

VRS
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Fig. 2. Kinematics of peridynamics theory: Particle x is bonded to all particles
within a region B,. Particle ¥ maps to particle y in the deformed configuration. An
averaged deformation gradient tensor can be defined that maps the bonds in the
reference configuration to the deformed configuration. This quantity is used in the
crystal plasticity constitutive model. The stresses obtained from the constitutive
model can be mapped to bond force states T[x](x —x) in the reference
configuration.

where,  is an influence function defined at particle x which weights
the contribution from each neighbor x' (for e.g. based upon the
initial bond length w = &(|x — %)) and K denotes a symmetric
shape tensor, defined as

K= o®-x) & —x)dV, 3)
BX
The deformation gradient F (defined with respect to B) at time ¢
as needed in the constitutive models can be computed from the
deformation of bonds attached to material point x as follows
(Silling et al., 2007):

F= ( oy -y —x)dvx,)l(‘l (4)
By
The derivation of Egs. (2) and (4) can be found in Section 18 of

Silling et al. (2007) where it is also shown that these definitions
ensure the balance of angular momentum.

3. Numerical implementation

By dividing the body B into numbers of cells, each represented
by a particle, the integral expressions can be rewritten as a
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