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One of the most fruitful and elegant approach (known as Kolosov-Muskhelishvili formulas) for plane
isotropic elastic problems is to use two complex-valued holomorphic potentials. In this paper, the algebra
of real quaternions is used in order to propose in three dimensions, an extension of the classical Muskhe-
lishvili formulas. The starting point is the classical harmonic potential representation due to Papkovich
and Neuber. Alike the classical complex formulation, two monogenic functions very similar to holomor-
phic functions in 2D and conserving many of interesting properties, are used in this contribution. The
completeness of the potential formulation is demonstrated rigorously. Moreover, body forces, residual
stress and thermal strain are taken into account as a left side term. The obtained monogenic representa-
tion is compact and a straightforward calculation shows that classical complex representation for plane
problems is embedded in the presented extended formulas. Finally the classical uniqueness problem of
the Papkovich-Neuber solutions is overcome for polynomial solutions by fixing explicitly linear
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1. Introduction
1.1. Applications of potential theory

Well known numerical methods such as Finite Element Method
(FEM) or Boundary Element Method (BEM) enable to solve various
complex mechanical problems including non-linear problems
(plasticity or other non-linear behaviors, contact problems, large
displacements etc.). Isotropic linear elasticity is nevertheless a
frequent problem in mechanical engineering. Potential theory
developed since the late 19th century is still widely used in linear
elasticity in 2D and 3D. Barber (2003) presents an overview of the
fundamental potential theory for elasticity related among others to
Airy, Boussinesq, Green, Zerna, Galerkin, Papkovich and Neuber
names. New potential formulations for instance developed by
Kashtalyan and Rushchitsky (2009) deal with inhomogeneous
media.

Many practical applications rely on potential theory. Stress
Intensity Factors (SIF) in the framework of linear fracture mechan-
ics have been intensively studied. For example Sneddon and
Lowengrub (1969) or Kassir and Sih (1973, 1975) proposed various
analytical solutions based on potential theory. Dual integral
equations were intensively used for mixed boundary value
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problems that arise in potential theory adapted for crack problems.
An overview of useful methods is given by Sneddon (1966). Fully
analytical or semi-analytical solutions have also been established
for various elastic problems using potential theory. For instance,
Ying et al. (1996) applied potential theory for a pressure vessels
and piping. Chau and Wei (2000) proposed a semi-analytical solu-
tion (relying on truncated expansions into series of the potentials)
of a finite solid circular cylinder subjected to arbitrary surface load.
More recently potential theory has been used for applied industrial
investigations. In the field of rolling process for instance, coupled
thermo-elastic inverse solutions that interpret (in real time) mea-
surements of stress and temperature done under the surface of a
cylindrical tool have been proposed in 2D by Weisz-Patrault
et al. (2011, 2012, 2013) and in 3D by Weisz-Patrault et al.
(2013, 2014). Thus, the contact between the product and the tool
can be characterized during the process. Experimental tests that
confirm the feasibility of such an approach have been performed
by Weisz-Patrault et al. (2012) and Legrand et al. (2012, 2013). This
kind of recent works contributes to renew the interest for potential
theory because of their practical and technical content.
Furthermore, numerical methods can also be developed on the
basis of potential theory. Hintermiiller et al. (2009) proposed a 3D
potential based numerical method for cracks and contact
problems. Potential theory adapted for numerical methods are
completely meshless and can be suitable for problems where very
steep stress gradients are obtained avoiding mesh refinement and
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long computation times issues that arise with FEM for instance.
Cruse et al. (1969) proposed such a numerical algorithm based
on potentials and singular integral equations. Morales et al.
(2013) proposed more recently a potential based numerical
solution for 2D problems, and Morales et al. (2012) focuses on
numerical uniqueness of the Boussinesq and Timpe solutions.

1.2. Motivations for extended Muskhelishvili formulas

For plane problems one of the most elegant and fruitful
approach has been developed by Muskhelishvili (1953). Complex
plane is used and holomorphic C-valued potentials are derived
from bi-harmonic Airy potential and Goursat theorem. A presenta-
tion of the theory and practical methods has been given by Lu
(1995). The main advantages are related to the holomorphy of
the involved potentials, indeed expansion into series, Cauchy for-
mula and conformal mapping techniques are available as well as
singular integral equation techniques studied by Muskhelishvili
(1953). Usually, for three-dimensional problems R-valued
harmonic or bi-harmonic potentials are used, known as Galerkin
vector potential and Papkovich-Neuber potentials initially intro-
duced by Papkovich (1932) and re-discovered by Neuber (1934).
These potential representations are complete, thus one can prove
the existence of the potentials as studied by Mindlin (1936),
Gurtin (1962), Stippes (1969), Cong and Steven (1979), Millar
(1984), Hackl and Zastrow (1988). Complete general solutions
are also studied in the fundamental works by Slobodyansky
(1954, 1959) and Wang et al. (2008) among others.

On the basis of Papkovich-Neuber potentials, this paper aims at
establishing a generalized Muskhelishvili formula in three dimen-
sions. There is no direct extension of the complex plane in 3D.
However, the four dimensional algebra of quaternions (Definition
1) is a convenient extension of the complex plane. Extensive work
has been done in this field and a suitable extension in higher
dimensions of holomorphic functions has been defined and studied
intensively. For instance the book of Giirlebeck et al. (2007) gathers
standard knowledge about the algebra of real quaternions. A class
of functions, called monogenic (Definition 3), presents interesting
similarities with holomorphic functions defined in the complex
plane. Thus several advantages of the classical formulas of
Muskhelishvili (1953) in 2D are transposed in 3D with the pre-
sented potential formulation. Indeed, monogenic power series
expansions studied for instance by Malonek (1990), Bock and
Giirlebeck (2010), Bock (2012) and Laurent series expansions
(see e.g. van Lancker (1999), Bock (2012)) as well as the Cauchy
formula (e.g. Brackx et al. (1982)) are still available. Conformal
mapping technics are more limited than in 2D, but Mébius trans-
formations are still available as detailed by Sudbery (1979).

A second motivation is the disadvantage of Papkovich-Neuber
representation that arises if polynomial solutions of exact degree
n are considered for the displacement field. Indeed, Bauch (1981)
showed that if very classical spherical harmonics are used for the
Papkovich-Neuber potentials then 8n +4 polynomial solutions
are generated, but the dimension of the subspace of polynomial
solutions of degree n is only 6n + 3. Thus, many solutions obtained
with Papkovich-Neuber representation are linear dependent
which can cause numerical stability problems. But fixing these
dependencies in explicit formulas is very difficult. However, Bock
and Giirlebeck (2009b) already proposed a representation of dis-
placement field by means of two monogenic functions which is
similar to the representation demonstrated in this paper. Then
Bock and Giirlebeck (2009a) demonstrated that 8n + 8 polynomial
solutions are generated by considering spherical monogenics for
the two monogenic functions. But 2n+5 are linear dependent
and explicit formulas have been given. Thus, monogenic represen-
tations present the significant advantage (compared with classical

Papkovich-Neuber representation) of allowing explicit formulas of
linear dependencies when spherical harmonics (or monogenics)
are used for the potentials. Thus, numerical stability is expected
to be much better for numerical applications.

In this paper, the existence of the two monogenic potentials is
proven a priori by using only mathematical tools related to
differentials calculus alike classical proofs of Airy potentials,
Muskhelishvili formulas or Papkovich-Neuber representation.
Thus completeness is demonstrated and an elegant and very com-
pact representation of the displacement and stress fields is
obtained. Moreover body forces, thermal strain and residual stress
are taken into account in the potential representation. Finally in
Section 6, polynomial solutions are constructed and it is shown
how the redundancy of polynomial systems can be overcome.

Furthermore Piltner (1987, 1988, 1989) contributed signifi-
cantly to potential theory by developing an alternative complete
representations of 3D isotropic elasticity based on complex func-
tions. Piltner (2001) provided an overview of complex methods.
He was using six holomorphic functions depending on three com-
plex variables, defined as complex-valued linear functions on R>.
These representations cover under certain restrictions on the
parameters the known representation formulas for the plane case
and there are also results to restrict the number of complex vari-
ables to one. Without going too much into the details it should
be mentioned that these representations are deeply related to each
other. The linear functions used by Piltner can be found in
Whittaker (1903) and in the book by Whittaker and Watson
(1927) as a tool to describe spherical harmonics. In this way they
are related also to the representation of Legendre polynomials
and associate Legendre functions which are nowadays mainly used
for this purpose (see for instance Sansone (1959)).

In this paper, a different framework is used (algebra of real
quaternions instead of complex plane) regarding to the advantages
listed in this section. It should be noted that another potential solu-
tion for 3D Neumann and Dirichlet problems (surface tractions or
displacements imposed at the surface) for a general elastic body
is described in the book of Bui (2006). The solution relies on the
Kelvin-Somigliana or Kupradze-Bashelishvili tensors (equivalent
to the Green tensor for elastostatic) introduced by Kupradze
(1965). On this basis a simple or double layer potential vector
and an integral equation has been solved analytically (in the form
of an absolutely convergent series) by Pham (1967). In this paper
the extended Muskhelishvili formulas are not derived from these
potentials, because this method does not rely on harmonic
analysis.

1.3. Geometrical restrictions

Complete representations for displacements require geometri-
cal restrictions due to constructions. These restrictions are
relatively weak and related to the boundary value problem that
has to be solved. More serious is the problem of redundancy in
the representation formulae because this avoids the uniqueness
of the representations. Analyzing for instance the classical Papko-
vich-Neuber representation then it is known already for a long
time that under certain additional assumptions only three of the
four harmonic functions are needed. Sokolnikoff (1956) showed
that one of the three harmonic functions in the vector potential
can be omitted (set to be zero) if the domain is normal with respect
to the corresponding direction. The scalar potential can be
removed if for v # 1 the domain is star-shaped. What is not so
much discussed is the question whether additional assumptions
are necessary if one of the four functions should only be expressed
as a linear combination of the other three. A good survey on results
about the uniqueness of the representations can be found also in
Cong (1995).
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