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a b s t r a c t

Thin, initially-flat plates can deform inextensionally and elastically during large out-of-plane deforma-
tions. This paper revisits an analytical method for describing the developable shapes of displaced plate,
in order to quantify and validate its effectiveness. Results from practical experiments and finite element
analysis are compared to theoretical predictions from well-known examples, and excellent correlations
are obtained.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Inextensional Theory was developed by Mansfield (1955) nearly
60 years ago for predicting the large-displacement, elastic shape of
transversely-loaded, thin-walled elastic plates, typically used in
aircraft structures. Shallow, or small, displacement methods are
inadequate because they do not deal with the in-plane, or mem-
brane, stresses concomitant to the build-up of moderate deflec-
tions—even those of the order of the thickness of the plate.
Under larger deflections, Mansfield argues that, for simply-held
plates, these membrane stresses and hence, strains are eventually
curtailed because significant in-plane forces cannot be transmitted
from the supporting boundary of the plate into the bulk of the
structure. In the limit, he assumes that the membrane strains are
zero, which permits a simplification of the deformed shape of plate
in obeyance to Gauss’s Theorema Egregium, namely, that it becomes
a developable surface.

Mansfield renders the surface relative to the initial flat state as a
general conical displacement field, and then using calculus of vari-
ations, the spatial distribution of corresponding conical generators
is found by maximising the strain energy stored in plate under
load, leading to a governing differential equation of generator lay-
out. The variational nature of this formulation with its requirement
of general, non-parallel generators was first proposed by Maxwell
almost a century before (Niven, 1890) but without a generalised
framework for its solution, as delivered by Mansfield. Some years

later, Mansfield recognises that his theory is analogous to the ear-
lier Tension Field Theory of Wagner for computing the shape of
wrinkled regions in thin-walled terrestrial structures mainly under
in-plane shear loads. Consequently, parallels between both types
of problem and their performances emerge, for example, a higher
theoretical stiffness is predicted because the displacement field is
prescribed in both.

Mansfield provides insightful solutions for a few of his cases,
including tip-loaded cantilevers and end-loaded strips as idealised
models of aircraft wings, where he focusses mainly on calculating
the load–deflection responses. In the case of a triangular plate, he
also extracts a rudimentary picture of the generator layout using
a strain lacquer painted onto the surface, which cracks in the direc-
tion of principal tensile strains after loading (Mansfield and
Kleeman, 1955). Theoretical predictions of generators successfully
compare when they are overlaid in this picture and, importantly,
the experiment also confirms that the layout is fixed only by the
loading type and planform geometry, and not by the loading mag-
nitude, when displacements are greater than the thickness of plate.
In other cases, the layout is not confirmed directly by experiment;
instead Mansfield exploits the analogy with Tension Field Theory
by devising wrinkled specimens of the same geometrical propor-
tions and equivalent boundary conditions, where the highly visible
outline of crests and troughs normal to wrinkles gives equivalent
information on the expected layout of generators in his bending
experiments: see Mansfield (1989).

The properties of generators may be gleaned instead from the
displacement field of the plate, which is then transformed into
generator data. For accuracy and completeness, it is necessary to
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obtain a highly-resolved, three-dimensional map of the entire
deformed surface, and this is now possible with recent advances
in photographic technology that we describe later. Therefore, one
aim of this study is to validate Inextensional Theory directly at a
displacement level by comparing predictions of conical generators
with those computed from the measured data: this quantitative
comparison is absent from the literature but we are mindful that
it achieves same visual objective as Mansfield’s single experiment
with lacquer. In doing so, we underline the value of Inextensional
Theory but we also aim to widen its appeal to other researchers in
view of a recent resurgence in problems featuring developable
plates and shells, beyond Mansfield’s cantilever plates. For exam-
ple, the large deformation of confined shells provides some insight
into the quantum world of dislocation movement in materials
(Cerda and Mahadevan, 2005) and into the efficient storage of
DNA ribbons within cells (Giomi and Mahadevan, 2010); macro-
scopically, the random crumpling of paper can be described by
developable regions interconnected by sharp ridges (Amar and
Pomeau, 1997), and the ordered wrinkling of a buckled cylinders
is similar to the well-known developable Yoshimura pattern in
foldable tubes (Seffen and Stott, 2014). New corrugated structures
made from developable strips connected together are one type of
‘‘morphing’’ structure, which combine highly directional compli-
ance and stiffness for achieving large changes in shape whilst pre-
serving structural integrity (Seffen, 2012); simple shells ‘‘growing’’
out of plane under imposed, so-called inelastic strains, must buckle
into a variety of developable mode shapes for growth to proceed
efficiently (Seffen and Maurini, 2013).

In the Appendix at the end of paper, the main details of Inexten-
sional Theory and pertinent examples are repeated from Mansfield
(1989) for completeness. In the following section, the relevant
kinematical assumptions and definitions are outlined ahead of pro-
cessing the geometrical data from experiments in Section 3. Two
types of experiment are carried out on the same theoretical exam-
ples from the Appendix. The first are physical experiments on a tri-
angular plate loaded by a force applied to its tip. The deformed
state is accurately recorded using a laser-scanning camera, and
the process of obtaining generator information from the measured
displacements is carefully described. The method is effective but
the maximum displacements that can be wrought are limited for
reasons described, although we far exceed Manfield’s nominal
limit of a single thickness. Therefore, our second ‘‘experimental’’
study is finite element analysis, which allows us to circumvent
some of the practical issues faced before and to test the robustness
of the assumptions of Inextensional Theory in earnest. Most nota-
bly, the induced deformation can be much larger and geometrically
non-linear, and we can apply end-wise moments. We therefore
consider swept plates with a broad free edge to which end
moments can be applied, as well as the previous tip-loaded trian-
gular plates. All results are compared in Section 4, before finishing
with a discussion and conclusions.

2. Kinematics

Following Mansfield, Fig. 1 shows the planform of a thin, canti-
lever plate of general outline, rigidly built-in along one straight
edge. The absent loading is applied normal to the plate, and the
deformed surface is taken to be developable, where straight-line
generators can be drawn through every point on the surface. By
definition, there is no twist and curvature along a generator, only
curving across and normal to it. Elemental slices of deformed plate
are bounded by adjacent generators, which do not have to be par-
allel, so each slice deforms into a element lying on part of a hypo-
thetical conical surface. The curvature of this element varies
inversely with distance, g, along the generator, where the origin

of coordinate is taken to be the conical vertex; because the curva-
ture at this point is infinitely large, the vertex must lie outside the
planform, as shown. The vertices of successive generators form a
locus known as the generatrix, and their inclination is measured
by the angle, a, with respect to some arbitrary datum line with
ordinate, X. Crucially, all geometrical parameters are specified with
respect to the original flat plane even though parts of the deformed
plate may lie well above or below it: without this specification, the
kinematics are simply unwieldy and tractable solutions for the lay-
out of generators expressed via ða;XÞ are not forthcoming. As we
shall show, this does not undermine the accuracy of results, even
for relatively large displacements. This specification also dictates
that the layout of generators remains fixed and independent of
the loading magnitude, provided linear elasticity prevails. As a cor-
ollary, we only need to perform a single set of measurements on a
deformed, thin plate without measuring the load: this reduces the
number of tests to be performed as well as simplifying the practical
set-up.

In these tests, we accurately measure the displaced shape of
plate in Cartesian space and then compute the changes in plate
curvature: in finite element analysis, these curvatures are directly
available. In order to compare directly to solutions from Inexten-
sional Theory, these curvatures are converted into generators using
a Mohr’s circle of twisting curvature versus ordinary curvature
(Calladine, 1983). For every point on a developable surface, the
Mohr’s circle passes through its own origin, giving way to one
non-zero principal curvature—the local conical curvature, j1. How-
ever, the asymptotic nature of Inextensional Theory suggests that
membrane strains everywhere may be very small and not abso-
lutely zero. Of course, these could be measured directly (although
not easily) but we note from Gauss that only their particular spatial
variation within the surface affects the developable assumption. In
other words, if there is Gaussian, i.e. double curvature, then mem-
brane strains are significantly present. Commensurately, we
assume that the Mohr’s circle has a small second principal curva-
ture, j2, and we define a corresponding measure of the degree of
membranal stretching—the stretching ratio, SR—such that

SR ¼ j2

j1

����
���� ð1Þ

which is calculated throughout the plate.
It turns out that this ratio is always a small number, with only

moderate increases in value close to the edges of plate where the
assumed conical shape does not comply with the requirements
of the free-edge boundary condition. A boundary layer forms in
practice to facilitate this requirement, where the original propo-
nent, Basset (1890), estimates the width of layer to be ‘‘compara-
ble with the thickness [of plate]’’; much later, Mansfield
(1989) carries out a formal calculation and shows its width is of
the order of

ffiffiffiffiffiffi
tj
p

, where t is the thickness and j the change in cur-
vature of the plate. Since the ratio is very small elsewhere, it
becomes appropriate to define an acceptable threshold below
which membrane effects may be assumed to be negligible. We
can examine the performance of points ‘‘lying’’ above or below this
threshold, in order to appreciate the prevalence of inextensionality
and, when we vary the threshold, we can observe how the charac-
ter of this distribution fares. For example, when the threshold is
lowered, more data points are classified as being extensional, and
they grow in number, primarily, from the boundary of the plate
inwards. However, extra points in the middle of the plate away
from any edges also become classified as extensional even though
conical displacements are clearly evident there when the shape of
plate is inspected visually. The reason is because the threshold now
equates with the level of noise inherent during numerical process-
ing of the data. After trial and error, we set the threshold to be 0.02,
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