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a b s t r a c t

The microplane model allows for the description of damage induced anisotropy in a natural manner by
introducing constitutive laws for quantities on individual microplanes at each material point. However, if
damage or other strain softening constitutive laws are used within the microplane approach, the well-
known problem of localization arises leading to spurious results and mesh dependency. This problem
demands some regularization method to stabilize the solution. The paper focuses on the efficient imple-
mentation of implicit gradient enhancement for microplane damage models. Previous works enhanced
the strain tensor, thus resulting in large number of extra degrees of freedom, which limits the use of this
method for large scale 3D simulations. A new method which enhances the equivalent strain driving the
damage on each microplane is introduced in this work. The new method limits the number of additional
degrees of freedom to one, while preserving the regularizing effect. The two methods are implemented
within a 3D finite element code to compare their performance. The microplane model used is based
on a thermodynamically consistent formulation and on a volumetric–deviatoric split of strains on each
microplane. Furthermore, an exponential damage law is used and an equivalent strain expression which
distinguishes between compression and tension is applied to simulate the behavior of concrete. The capa-
bilities of the proposed formulation are demonstrated by comparison to published experiments on plain
concrete.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The microplane model is a powerful tool for modeling concrete
and other quasi-brittle materials (Bažant et al., 2000; Caner and
Bažant, 2013a). The behavior of those materials is characterized
by the transition from isotropic to anisotropic response once the
material enters the inelastic regime. Concrete, for example, which
consists of different constituents, exhibits upon loading initiation
of microcracks often at the interfaces between aggregates and
the mortar matrix. The growth of these microcracks leads to aniso-
tropic behavior and eventually to macroscopic cracks and failure.
The microplane approach provides a simple and straightforward
way to model this phenomenon by defining the constitutive
material relations between stress and strain vectors on randomly
oriented planes. Since the pioneering work by Bažant and Prat
(1988), it has been researched extensively, and a variety of consti-
tutive material laws has been implemented within the microplane

approach including damage and plasticity. However, the strain
localization problem which is well known for strain softening
constitutive models persists also with microplane models. This
problem is caused by ill-posedness of the governing differential
equations in case of strain softening material laws, which leads
to pathological mesh dependency and numerical instability of the
finite element solution.

Many remedies have been proposed to counter this problem
and some of them have been already used to regularize microplane
damage models. One powerful and physically motivated method is
the nonlocal integral type approach. Although usually motivated
by its ability to eliminate mesh dependency and slow convergence
rate, micromechanical arguments have been also presented. For
example, the dependency of damage at one microcrack on the
release of stored energy from its neighborhood, and the effect of
material inhomogeneity, which causes the dependency of the
stress state at a given material point on its surrounding region
(Bažant, 1991). One difficulty with the integral type formulation
is that it leads to a set of integro-differential equations, which
require sharing information between points, thus abandoning the
advantage of classical finite element method and complicating
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the implementation within the finite element software. This issue
motivated the so-called gradient enhanced models, which preserve
the mathematical locality of the finite element method, while tak-
ing the field around the point into account by enhancing the equa-
tions with higher gradients of strain or other internal variables.
There are two types of gradient models, explicit and implicit. Expli-
cit gradient enhancement is only weakly nonlocal, thus fails to reg-
ularize the solution under some circumstances. Implicit gradient
enhancement, on the other hand, have the advantage of being
strongly nonlocal and largely equivalent to the integral type
(Peerlings et al., 2001), while keeping the differential nature of
the equations, thus results in a straightforward implementation
in finite element codes. Its idea is to introduce a second differential
equation to calculate the nonlocal field, which is usually the coun-
terpart of the local strain or other local internal variables. The
expense to be paid in this case is adding extra degrees of freedom.
For isotropic damage models, it is sufficient to apply the enhance-
ment for a scalar valued quantity, such as the equivalent strain
(Saroukhani et al., 2013), thus the extra degrees of freedom is
limited to 1. This fact makes implicit gradient enhancement for
isotropic damage models very successful. On the other hand, for
anisotropic models, the nonlocal field needs to be a tensorial quan-
tity, or in case of microplane models a scalar quantity at every
microplane. This problem means that the number of extra degrees
of freedom is very large and renders the method unpractical for
large scale 3D simulations.

Though the microplane model has been researched extensively,
little attention has been paid to the regularizing techniques which
are essential for the practical application of the model (Caner and
Bažant, 2013a). A nonlocal integral type method has been imple-
mented for the microplane model, for instance, in Bažant and Di
Luzio (2004), Bažant and Ozbolt (1990) and Luzio (2007). Implicit
gradient enhanced microplane models have been introduced in
Kuhl et al. (2000) and Leukart (2005), where the strain tensor
has been used as the nonlocal variable. The aim of this work is to
explore the feasibility of formulating an efficient and reliable
way to regularize the microplane damage models using an implicit
gradient enhancement. The paper is organized as follows. Firstly,
the gradient model used in Kuhl et al. (2000) and Leukart (2005)
is reviewed and explained. Afterwards, a new simplified method
for the implicit gradient enhancement is derived. Finally, the
behavior of the two methods is demonstrated and compared by
simulations of experiments on plain concrete.

2. Strain gradient model

2.1. Finite element formulation

The gradient enhanced microplane damage model in Kuhl et al.
(2000) and Leukart (2005) is based on enhancing the strain tensor.
This means that a tensorial nonlocal field is considered. The system
is then governed by 2 coupled differential equations and solved
using a simultaneous, fully coupled scheme. The first equation is
balance of linear momentum for quasi-static case

r � rþ f ¼ 0 ð1Þ

and the second is the modified Helmholtz equation to describe the
nonlocal strain tensor

��� cr2�� ¼ �; ð2Þ

with the homogenous Neumann boundary condition

r�� � nb ¼ 0; ð3Þ

where, r is the Cauchy stress tensor, r� is the divergence operator
and f is the body force vector. Moreover, � is the local strain tensor,

�� is its nonlocal counterpart, c is the gradient activity parameter, nb

is the normal to the outer boundary, r is the gradient operator and
r2 is the Laplace operator.

The homogenous Neumann boundary condition adopted here is
commonly used and it is enough to ensure the regularizing effect.
With this boundary condition the local and nonlocal strains are
equal for homogenous deformations and the gradient method is,
therefore, consistent with integral type formulation. Peerlings
et al. (2001) showed that this type of boundary condition provides
larger nonlocal weight factors for the material close to the external
boundaries. This is motivated from the physical point of view,
because the model in this case will be more sensitive to surface
effects. This boundary condition is applied to the entire external
boundary regardless whether there are applied displacements or
loads to some regions or not, since a physical connection between
the two fields boundaries is not clear.

To get the weak form of Eqs. (1) and (2), they are multiplied by
the weight functions du and d��, respectively,Z
B

du � r � rdv þ
Z
B

du � f dv ¼ 0; ð4Þ

Z
B

d�� � ��dv �
Z
B

d�� � cr2��dv ¼
Z
B

d�� � �dv: ð5Þ

Substituting the relation r � r � duð Þ ¼ du � r � rþ r : rdu, Gauss
divergence theorem

R
@B rnb � duda ¼

R
B r � r � duð Þdv and Cauchy

theorem r � nb ¼ te in Eq. (4) yieldZ
@B

te � duda�
Z
B
r : rdudv ¼

Z
B

du � f dv ð6Þ

and similarly for Eq. (5), substituting the relation r � d�� � r��ð Þ ¼
d�� � r2��þrd�� � r��, Gauss divergence theorem

R
@B r�� � nb � d��da ¼R

B r � d�� � r��ð Þdv and the boundary condition r�� � nb ¼ 0 yieldZ
B

d�� � ��dv þ
Z
B
rd�� � cr��dv ¼

Z
B

d�� � �dv: ð7Þ

Space discretization for the finite element method is obtained by
dividing the domain B into sub-domains Be � B. Interpolation
within the elements is achieved with eight nodes using linear shape
functions Nðn;g; fÞ within the isoparametric concept of finite ele-
ment method, where n;g and f are local coordinates that can have
values from �1 to 1. Then, the displacement field, and the varia-
tional field du may be interpolated over the sub-domains as follows

u ¼ Nðn;g; fÞde
; duðn;g; fÞ ¼ Nðn;g; fÞdde ð8Þ

and the gradient of the displacement field is given as

ru ¼ @xNde ¼ Bde
; rdu ¼ @xNdde ¼ Bdde

: ð9Þ

Similarly, the nonlocal strain field and its variational field are also
interpolated with linear shape functions N as follows

�� ¼ NEe; d�� ¼ NdEe ð10Þ

and the gradient of the nonlocal field is given as

r�� ¼ @xNEe ¼ BEe; rd�� ¼ @xNdEe ¼ BdEe; ð11Þ

where de are the nodal displacements and Ee are the nodal nonlocal
strains. The equations have to be satisfied for all admissible dde and
dEe, so finally Eqs. (6) and (7) becomeZ
B

BTrdv ¼
Z
B

NT f dv þ
Z
@Be

NT teda; ð12Þ

Z
B

NT ��dv þ
Z
B

BT cr��dv ¼
Z
B

NT�dv: ð13Þ

I. Zreid, M. Kaliske / International Journal of Solids and Structures 51 (2014) 3480–3489 3481



Download English Version:

https://daneshyari.com/en/article/6749082

Download Persian Version:

https://daneshyari.com/article/6749082

Daneshyari.com

https://daneshyari.com/en/article/6749082
https://daneshyari.com/article/6749082
https://daneshyari.com

