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a b s t r a c t

An equivalent classical plate model of corrugated structures is derived using the variational asymptotic
method. Starting from a thin shell theory, we carry out an asymptotic analysis of the strain energy in
terms of the smallness of a single corrugation with respect to the characteristic length of macroscopic
deformation of the corrugated structure. We obtained the complete set of analytical formulas for effective
plate stiffnesses valid for both shallow and deep corrugations. These formulas can reproduce the well-
known classical plate stiffnesses when the corrugated structure is degenerated to a flat plate. The exten-
sion–bending coupling stiffnesses are obtained the first time. The complete set of relations are also
derived for recovering the local fields of corrugated structures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Corrugated structures have been widely used in civil, automo-
tive, naval and aerospace engineering, to name only some, dia-
phragms for sensing elements, fiberboards, folded roofs,
container walls, sandwich plate cores, bridge decks, ship panels,
etc. (Andreeva, 1966; Mccready and Katz, 1939; Seaquist, 1964;
Baum et al., 1981; Carlsson et al., 2001; Liang et al., 2001; Davalos
et al., 2001; Buannic et al., 2003; Aboura et al., 2004; Talbi et al.,
2009; Haj-Ali et al., 2009; Viguié et al., 2011). Recently, corrugated
structures are also applied for flexible wings or morphing wings
(Yokozeki et al., 2006; Gentilinia et al., 2009; Thill et al., 2010)
due to their unique characteristics of having orders of magnitude
different stiffnesses in different directions.

Although commercial codes allow one to analyze corrugated
structures by meshing all the corrugations using shell elements
or solid elements, it is not a practical way to finish prototype in a
timely manner as it requires significant computing time, particu-
larly if the structure is formed by hundreds or thousands of corru-
gations. The common practice in analysis of corrugated structures
is to model it as an equivalent flat plate, which is possible if the
period of corrugation is much smaller than the characteristic
length of macroscopic deformation of the structure (see Fig. 1).
For example, to model the corrugated structure using the Kirchhoff
plate model, also called the classical plate model, we need to ob-
tain the following strain energy by analyzing a single corrugation:
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where x; y are the two in-plane coordinates describing the equiva-
lent plate, �xx; �yy; �xy the membrane strains, jxx;jyy;jxy the curva-
ture strains, Aij;Dij and Bij represent extension stiffnesses, bending
stiffnesses, and extension–bending couplings, respectively. The
stiffness matrix in Eq. (1) could be in general populated for an
equivalent plate model of general corrugated structures. However,
it will be shown later that some of the stiffness constants vanish
as shown in Eq. (1) for a corrugated structure made of a single
isotropic material.

The literature is rich in equivalent plate modeling of corrugated
structures with the first treatment known to the authors dated
1923 (Huber, 1923) and a very recent treatment appeared in
2013 (Bartolozzi et al., 2013). Various methods with different lev-
els of sophistication were used in numerous studies. Generally
speaking, existing methods can be generally classified either as
engineering approaches based on various assumptions or asymp-
totic approaches based on asymptotic analysis of governing differ-
ential equations of a shell theory. Most methods fall in the category
of engineering approaches which invoke various assumptions for
boundary conditions and force/moment distribution within the
corrugated structure. For a given state of constant strain, the actual
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(or assumed) distributions of forces and moments within the cor-
rugated structure will be determined. Then force or energy equiv-
alence is used to derive the corresponding stiffness constants (see
Briassoulis, 1986; Xia et al., 2012; Bartolozzi et al., 2013 and refer-
ences cited therein). Although both analytical approach and finite
element analysis can be used to predict these stiffness constants,
the analytical approach has the advantage of providing a set of
close-form expressions in terms of the material and geometry
characteristics of the corrugated structure while the finite element
analysis predicts values which are valid for a specific corrugated
structure. Asymptotic approaches exploit the smallness of a single
corrugation with respect to characteristic length of macroscopic
deformation of the corrugated structure (Andrianov et al., 1998;
Manevich et al., 2002; Arkhangelskii and Gorbachev, 2007; Andria-
nov et al., 2009). Substituting asymptotic expansion of the field
variables into the governing differential equation of the shell
theory, a series of system of governing differential equations corre-
sponding to different orders can be solved to find the relationship
between the equivalent plate and the corrugated structure. Be-
cause different methods are used to treat this problem, it is not
surprising that different results are obtained in previous studies,
which will summarized and compared here.

2. Results

To facilitate the comparison of different results in the literature,
we need to set up the necessary notations. Let x be the Cartesian
coordinate in the corrugation direction and e the projected length
of the corrugation Fig. 2. We denote by X ¼ x

e, the dimensionless
‘‘cell coordinate’’. Within a cell, X changes between �1=2 and

1=2. For any parameter, f, changing within a cell, hf i �
R 1

2

�1
2

f ðXÞdX.

The shape of the corrugation is described by the x3ðXÞ which is a
periodic function with the period unity. Without loss of generality,
one can set

hx3i ¼ 0; ð2Þ

by shifting the observer’s frame in the vertical direction. Let us also
denote

x3 ¼ e/ðXÞ; u ¼ dx3ðxÞ
dx

¼ d/ðXÞ
dX

; a ¼ 1þu2; ð3Þ

we can compute the arc-length of the corrugation S and the mo-
ment of inertia along the corrugation direction Iy as

S ¼ eh
ffiffiffi
a
p
i; Iy ¼ he2 /2 ffiffiffi

a
p� �

: ð4Þ

2.1. Results from previous studies

Seydel (1931) followed Huber (1923) and obtained the follow-
ing formulas for the equivalent bending stiffnesses

D11 ¼
e
S

Eh3

12ð1� m2Þ ; D12 ¼ 0; D22 ¼ EIy; D66 ¼
S
e

Eh3

24ð1þ mÞ :

ð5Þ

Here h denotes the thickness Fig. 3. It is assumed that the corru-
gated plate is made of isotropic elastic material with the Young’s
modulus E, and the Poisson’s ratio m. These results are also widely
cited in textbooks (Szilard, 1974; Bending et al., 1976; McFarland
et al., 1972). In later works, approximations for S and Iy for different
corrugated shapes were obtained (Lekhnitskii, 1968; Szilard, 1974;
Lau, 1981; Lee, 1981). A review of different approximate formulas of
S and Iy for various corrugation shapes can be found in Luo et al.
(1992). This is not needed as it is easy to evaluate the two integrals
in Eq. (4) accurately for any given corrugated shape using comput-
ers nowadays.

Later, Briassoulis (1986) proposed the following modified
relations

D11 ¼
e
S

Eh3

12ð1� m2Þ ; D12 ¼ mD11;

D22 ¼
EhT2

2
þ Eh3

12ð1� m2Þ ; D66 ¼
Eh3

24ð1þ mÞ : ð6Þ

Here T is the rise of the corrugations measured to middle surface as
shown in Fig. 3. Briassoulis correctly recognized D12 due to the
Poisson’s effect. However, as will be shown later, the formulas for
D22 and D66 are not correct. The expression for D22 is obtained by
assuming a sinusoidal corrugated profile, x3 ¼ T sinð2px=eÞ.
Briassoulis’s relations are also used in Liew et al. (2006, 2009) and
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Fig. 1. Equivalent plate modeling of corrugated structures.
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Fig. 2. Shell geometry and unit cell.
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Fig. 3. Unit cell of a corrugated structure (sinusoidal shape is used for illustration).

2074 Z. Ye et al. / International Journal of Solids and Structures 51 (2014) 2073–2083



Download English Version:

https://daneshyari.com/en/article/6749092

Download Persian Version:

https://daneshyari.com/article/6749092

Daneshyari.com

https://daneshyari.com/en/article/6749092
https://daneshyari.com/article/6749092
https://daneshyari.com

