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a b s t r a c t

In this paper we study the pressure drop in a hydraulic fracture after shut-in of a water injection well. The
pressure transient behavior depends on fracture closure, lateral stress, rock elasticity and fracture fluid
leak-off. Under the assumption that horizontal cross-sections of a vertical fracture do not depend on
the vertical variable, we formulate a mathematical model which allows for determination of both pore
pressure and elastic rock displacements jointly with the fracture aperture and fracture fluid pressure.
An analytical consideration is performed for the case of an ideal very long fracture with the same aperture
along its full length. In the general case, fracture closure is analyzed numerically.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is well established that well fracturing may occur while a
large volume of water is injected to maintain an oil production
pressure. One way to determine the dimensions of the induced
fractures is to analyze the pressure transient data for these wells
(Cinco-Ley and Samaniego, 1981). A number of papers is dedicated
to the injection fall-off test analysis which offers one of the cheap-
est ways to determine the dimensions of induced fractures. The
goal of the present paper is to contribute to this study.

The theories developed (Nolte, 1986) are not sufficiently ad-
vanced to put together fracture closure, pressure distribution along
the fracture, leak-off rate through the fracture faces, regional stres-
ses, etc. It is due to the lack of a good mathematical model that one
should formulate a hypothesis that the flow near the crack is split
into ‘‘storage’’, ‘‘linear’’, ‘‘bilinear’’ and ‘‘radial’’ regimes in the
course of time, without knowledge of the regime durations
(Economides and Nolte, 2000). As for the Khristianovich–
Zheltov–Geertsma–de Klerk (KGD) model and the Perkins–Kem–
Nordgren (PKN) model (Adachi et al., 2007) they permit to relate
the fracture aperture with the fracture pressure but under the
strong assumption that rock stress field does not depend on pore
pressure distribution. We do not make assumptions on flow
regimes; in our approach, the flow regime and the solid matrix
deformations interact and can be defined only simultaneously.

Here, we study a flow of a fluid between the fracture faces
jointly with the flow through a porous medium taking into account
that the medium is elastic. In this way we find directly the pore
pressure, the rock stress and the fracture pressure without any
simplified leak-off hypotheses like the Carter formula (Economides
and Nolte, 2000). We restrict ourselves to the case of a fracture of
fixed size. We do not concern fracture stimulation; our goal is
rather to relate the fracture closure with the pressure drop after
injection shut-in.

2. A mathematical model

We consider a vertical hydraulic fracture of fixed height 2H and
fixed length 2L extending along the x- axis with z being the vertical
variable, Fig. 1. The fracture is open in the y-direction due to the
fluid injection at the center of the coordinate system ðx; yÞ. In what
follows, we restrict ourselves to the displacements in the plane
z ¼ 0, Fig. 2, assuming that all the cross-sections by the planes
z ¼ H1, jH1j 6 H, are effectively identical.

The poroelastic material near the fracture is considered to be a
homogeneous permeable medium which is governed by Biot
(1956) equations. At the instant t, each infinitesimal volume centered
at the point x is characterized by the solid phase displacement uðt;xÞ,
the fluid phase displacement vðt;xÞ and the pore pressure pðt;xÞ.

It is assumed that pores are saturated by a single-phase Newto-
nian fluid with efficient viscosity and efficient density which are
chosen to be representative of the multi-phase real fluid. Many
authors apply the hypothesis that the injected fluid and the forma-
tion fluid are effectively the same (Adachi et al., 2007). We also ap-
ply such an assumption.
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We introduce the Darcy velocity q ¼ wt , where w ¼ /ðv � uÞ
and / is the porosity. It is shown by Shelukhin and Eltsov (2012,)
that slow flows are governed by the quasi-static Biot equations:

divs ¼ qg; q ¼ � kr

gr
rp; q ¼ /qf þ ð1� /Þqs;

ðdivsÞi � @sij=@xj;

where s is the effective stress tensor, kr is the permeability, and gr is
the pore fluid viscosity, g is the gravitation acceleration, qf and qs

are the fluid phase density and the solid phase density respectively.
In the Biot theory, the tensor s is defined as follows

s ¼ k� � I þ 2lEðuÞ � ap � I; � ¼ trEðuÞ � EðuÞii � divu; ð1Þ

where Iij ¼ di
j, EðuÞ is the strain tensor related to the field u, 2EðuÞij ¼

@ui=@xjþ @uj=@xi, a is the Biot coefficient, k and l are the elasticity
moduli, x ¼ x1; y ¼ x2; z ¼ x3.

Generally, the porosity / is a function of � and p, this is why one
can write the equality (Biot, 1955)

@/
@t
¼ a

@�
@t
þ Se

@p
@t
;

where Se is the fluid yielding capacity coefficient. Due to incompress-
ibility of the pore fluid, the fluid mass conservation law becomes

@/
@t
þ divq ¼ 0:

By excluding q, one obtains that, outside the fracture, the flow is
defined by u and p which satisfy the system

divs ¼ qg; Se
@p
@t
¼ div

kr

gr
rp� a

@u
@t

� �
: ð2Þ

In application, S� ¼ KbB0a�1, where Kb is the bulk modulus of
rock frame drained of any pore-filling fluid, B0 is the Skempton
coefficient; the modulus k can be calculated by the formula
(Gassmann, 1951) k ¼ PþQ � 2l, where

P ¼ 4l
3
þ ð1� /Þ½ð1� /ÞKs � Kb� þ /KsKb=Kf

ð1� /Þ � Kb=Ks þ /Ks=Kf
;

Q ¼ /½ð1� /ÞKs � Kb�
ð1� /Þ � Kb=Ks þ /Ks=Kf

:

Here, Kf and Ks are the bulk moduli of the pore fluid and mineral
matrix respectively, and l is the shear modulus.

Observe that the moduli k and l can be obtained by other
means. Given a Young modulus E and a Poisson ratio m for the
fluid-saturated rock, one can use the formulas

k ¼ mE
ð1þ mÞð1� 2mÞ ; l ¼ E

2ð1þ mÞ :

For simplicity, we assume that the displacements and pressure
are symmetrical relative to the plane y ¼ 0. Since we study dis-
placements in the plane z ¼ 0 only, we assume the displacement
vector u to be two-dimensional, u ¼ ðu1;u2Þ � ðu;vÞ. As is custom-
ary in the theory of linear elasticity, we assume that the fracture
lies in the line y ¼ 0 and occupies the segment �L < x < L, with
wðt; xÞ ¼ vjy¼0 being half the fracture aperture. Introducing a
2� 2� matrix EðuÞij ¼ 0:5ð@ui=@xjþ @uj=@xiÞ, (i; j – 3), and defining
a 2� 2�matrix sij by formula (1), we project Eq. (2) onto the plane
z ¼ 0 to find that the two-dimensional displacement u and the
pressure p satisfy the equations

divs ¼ 0; Se
@p
@t
¼ div

kr

gr
rp� a

@u
@t

� �
; ðx; yÞ 2 X; ð3Þ

where L < a and

X ¼ fðx; yÞ : jxj < a;0 < y < bg:

At Cl ¼@X \ fy > 0g, a load r1 ¼ klpg is applied and a pore pres-
sure p1 is prescribed:

Cl : p ¼ p1; n � shni ¼ �r1; s � shni ¼ 0;
ðshniÞi � sijnj: ð4Þ

Nomenclature

H half of fracture height, cm
L half of fracture length, cm
h fracture depth, cm
p pore pressure, Pa
u solid phase displacement vector of poroelastic medium,

cm
v fluid phase displacement vector of poroelastic medium,

cm
q Darcy velocity vector, cm/s
s effective stress tensor of poroelastic medium, Pa
E effective strain tensor of poroelastic medium, dimen-

sionless
u displacement of poroelastic medium along the x-variable,

cm
v displacement of poroelastic medium along the y-variable,

cm
w fracture aperture, cm
X vicinity domain of fracture
R domain radius, cm
Cl lateral boundary of domain
Cc fracture surface

/ formation porosity, dimensionless
/c fracture porosity, dimensionless
qf pore fluid density, g=cm3

qs solid matrix density, g=cm3

kr formation permeability, mD
kc fracture permeability, mD
gr formation fluid viscosity, cp
gc fracture fluid viscosity, cp
E effective Young modulus of poroelastic medium, Pa
m effective Poisson ratio of poroelastic medium, dimen-

sionless
l effective shear modulus of poroelastic medium, Pa
k effective bulk modulus of poroelastic medium, Pa
a Biot coefficient, dimensionless
S� fluid yielding capacity coefficient, Pa�1

kl lateral stress coefficient, dimensionless
r1 lateral load, Pa
p1 lateral fluid pressure, Pa
pg medium weight, Pa
Qv total injection rate, m3=day

2H

x

z

y

Fig. 1. Fracture geometry.
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