
An invariant formulation for phase field models in ferroelectrics

D. Schrade a,⇑, R. Müller a, D. Gross b, M.-A. Keip c, H. Thai c, J. Schröder c

a Technische Universität Kaiserslautern, Lehrstuhl für Technische Mechanik, Gottlieb-Daimler-Straße, Postfach 3049, D-67653 Kaiserslautern, Germany
b Technische Universität Darmstadt, FB 13, Fachgebiet Festkörpermechanik, Petersenstraße 13, D-64287 Darmstadt, Germany
c Universität Duisburg-Essen, Institut für Mechanik, Universitätsstraße 15, D-45141 Essen, Germany

a r t i c l e i n f o

Article history:
Received 23 October 2013
Received in revised form 12 February 2014
Available online 26 February 2014

Keywords:
Phase field
Ferroelectrics
Ginzburg–Landau equation
Invariant formulation

a b s t r a c t

This paper introduces an electro-mechanically coupled phase field model for ferroelectric domain evolu-
tion based on an invariant formulation for transversely isotropic piezoelectric material behavior. The
thermodynamic framework rests upon Gurtin’s notion of a micro-force system in conjunction with an
associated micro-force balance. This leads to a formulation of the second law, from which a generalized
Ginzburg–Landau evolution equation is derived. The invariant formulation of the thermodynamic poten-
tial provides a consistent way to obtain the order parameter dependent elastic stiffness, piezoelectric, and
dielectric tensor. The model is reduced to 2d and implemented into a finite element framework. The
material constants used in the simulations are adapted to meet the thermodynamic condition of a van-
ishing micro-force. It is found that the thermodynamic potential taken from the literature has to be
extended in order to avoid a loss of positive definiteness of the stiffness and the dielectric tensor. The
small-signal response is investigated in the presence and in the absence of the additional regularizing
terms in the potential. The simulations show the pathological behavior of the model in case these terms
are not taken into account. The paper closes with microstructure simulations concerning a ferroelectric
nanodot subjected to an electric field, a cracked single crystal, and a ferroelectric bi-crystal.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ferroelectric materials are widely used in various industrial
applications, such as sensor and actuator technology, non-volatile
memory devices, micro-fluidics, transducers, and many more
(Scott, 2007). Their macroscopic electro-mechanical properties de-
pend on the ferroelectric domain structure which is subject to
change under externally applied loading. The evolution of the do-
main structure is thus a key point in understanding and engineer-
ing the macroscopic properties of ferroelectric functional devices.

Phase field modeling provides a well-established and physically
sound way to simulate evolving domain structures. The models
currently in use are based on a continuum thermomechanics ap-
proach which incorporates an order parameter (generally the elec-
trical polarization) as well as its first spatial gradient. The main
differences between these models lie in the choice of the order
parameter, the way in which the free energy is formulated, and
in the numerical solution strategy. Traditionally the order

parameter is the material polarization, and the free energy func-
tion is expanded to reflect cubic symmetry conditions with respect
to the primary thermodynamic variables (strain and electric dis-
placement), see e.g. the more recent publications (Völker and Kam-
lah, 2012; Xu et al., 2013; Chen, 2008; Su et al., 2011; Wang and Su,
2011) and the literature review given in Schrade et al. (2013). Since
in these models there is no direct coupling between the electric
displacement and the mechanical strain, the piezoelectric behavior
is encoded in the Landau potential which is a polynomial in the or-
der parameter. The resulting difficulties of fitting the small-signal
response to the bulk properties of the material are addressed in de-
tail in Völker et al. (2011, 2012) Another possibility is to meet the
symmetry requirements of the spontaneously polarized state and
thus to include the piezoelectric coupling terms in the free energy.
The Landau free energy can then be used to adjust the properties of
domain walls, see Schrade et al. (2013, 2008, 2007). As for numer-
ical solution strategies, Fourier spectral methods appear to be quite
time efficient (Chen and Shen, 1998) while imposing restrictions
on geometry, applicable boundary conditions, and material inho-
mogeneities. Another approach based on a staggered solution algo-
rithm with explicit time integration was taken in Zhang and
Bhattacharya (2005a,b). The various shortcomings of such numer-
ical implementations can be circumvented by finite element

http://dx.doi.org/10.1016/j.ijsolstr.2014.02.021
0020-7683/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +49 6312053781.
E-mail addresses: schrade@rhrk.uni-kl.de (D. Schrade), ram@rhrk.uni-kl.de

(R. Müller), gross@mechanik.tu-darmstadt.de (D. Gross), marc-andre.keip@
uni-due.de (M.-A. Keip), huy.thai@uni-due.de (H. Thai), j.schroeder@uni-due.de
(J. Schröder).

International Journal of Solids and Structures 51 (2014) 2144–2156

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.02.021&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.02.021
mailto:schrade@rhrk.uni-kl.de
mailto:ram@rhrk.uni-kl.de        
mailto:gross@mechanik.tu-darmstadt.de
mailto:marc-andre.keip@        uni-due.de
mailto:marc-andre.keip@        uni-due.de
mailto:huy.thai@uni-due.de
mailto:j.schroeder@uni-due.de   
http://dx.doi.org/10.1016/j.ijsolstr.2014.02.021
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


implementations (however at the expense of simulation time), see
e.g. Su and Landis (2007), Schrade et al. (2007) and Miehe et al.
(2012).

The cited publications (Schrade et al., 2013, 2008, 2007) are
however limited to an isotropic mechanical stiffness and dielectric
tensor. Motivated by Keip et al. (2014), in this article we intend to
overcome these shortcomings by introducing a phase field model
based on an invariant formulation for transverse isotropy which
is adapted to fit into the existing phase field framework. The main
problem in this adaption procedure is shown to be a loss of positive
definiteness of the stiffness and the dielectric tensor. This problem
is solved by extending the thermodynamic potential so that the
material tangent remains positive definite for arbitrary polariza-
tion states. In a second step, the small-signal model response is
compared with the input parameters of the simulation model.
The input parameters are then adjusted under the condition of a
vanishing micro-force. Numerical examples illustrate the necessity
for extending the invariant description and adjusting the input
parameters.

2. Phase field model

2.1. Basic equations and thermodynamical framework

We make use of Gurtin and Fried’s notion of a generalized mi-
cro-force thermodynamics (Fried and Gurtin, 1993, 1994; Gurtin,
1996) and, following (Su and Landis, 2007), apply this theory to a
phase field model. Since the current thermodynamical approach
is already laid out in detail in Schrade et al. (2013), we will only
summarize the main aspects in this regard while trying to keep
the presentation self contained.

In the presence of volume forces f and volume charges q the
ferroelectric body B under consideration obeys the mechanical
and electrical field equations

divrþ f ¼ 0; divD� q ¼ 0; ð1Þ

where r is the stress tensor and D is the electric displacement. The
linearized strain tensor e and the electric field E are defined by the
symmetrical and the negative gradient of the displacement field u
and the electric potential u:

e ¼ 1
2
ruþ ðruÞT
� �

; E ¼ �ru: ð2Þ

The thermodynamic framework consists of a micro-force sys-
tem involving a micro-stress tensor R and the internal and external
micro-force vector g and f, respectively. For an arbitrary control
volume R with boundary @R and outer unit normal n the power
expenditure of each of these quantities readsZ
@R
ðRnÞ � _P da;

Z
R

g � _P dv;
Z
R

f � _P dv: ð3Þ

The physical meaning of the order parameter Pðx; tÞ depends on
the concrete choice of the thermodynamic potential (Schrade et al.,
2013). As will be shown in Section 2.2, Pðx; tÞ here is the material
polarization less its dielectric and piezoelectric parts. Changes in
the order parameter reflect reorganization in the microstructure.
Such reorganization is accompanied by a dissipative process and
by changes in the thermodynamic potential, both of which are ta-
ken into account by the internal micro-force. Referring to Gurtin
(1996), we assume the local micro-force balance

divRþ fþ g ¼ 0: ð4Þ

The second law of thermodynamics balances the power expen-
diture of external sources with changes in the Helmholtz free en-
ergy W ¼ ~Wðe;D;P;rPÞ; hence we have to include (3)1 and (3)3

in the second law:

Z
@R
ðrnÞ � _u�u

d
dt
ðD � nÞ þ Rnð Þ � _P

� �
da

þ
Z
R

f � _uþu _qþ f � _P
� �

dv � d
dt

Z
R

Wdv P 0: ð5Þ

In accordance with current ferroelectric phase field modeling,
electrostatic forces (cf. McMeeking and Landis, 2005) are not taken
into account so that the Cauchy stress r is symmetric. After a
Legendre transform of the Helmholtz free energy according to

H ¼ W� D � E; ð6Þ

we obtain (cf. Nowacki et al., 1979) the electric enthalpy
H ¼ eHðe;E;P;rPÞ and writeZ
@R
ðrnÞ � _uþ ðD � nÞ _uþ Rnð Þ � _P
� �

da

þ
Z
R

f � _u� q _uþ f � _P
� �

dv � d
dt

Z
R

H dv P 0: ð7Þ

The internal micro-force g is omitted in the second law as it is
not part of the external power supply. Combining the local form
of (7) with (4), one obtains by standard arguments of rational
thermomechanics

r ¼ @H
@e

; D ¼ � @H
@E

; R ¼ @H
@rP

: ð8Þ

Insertion of these relations in the local form of the second law yields
the residual dissipation inequality

� g þ gð Þ � _P P 0; ð9Þ

where

g ¼ @H
@P

ð10Þ

is the micro-force vector. The term in the parenthesis is identified as
the dissipative micro-force

gdis ¼ g þ g: ð11Þ

The residual dissipation inequality (9) is satisfied (by means of a
sufficient condition) by assuming

gdis ¼ �b _P; ð12Þ

where b is a positive semi-definite second order inverse mobility
tensor (Gurtin, 1996). The dissipation D which takes place due to
the evolving microstructure is then given by

D ¼
Z
B
�gdis � _P dv ¼

Z
B

_P � ðb _PÞdv P 0: ð13Þ

We can now see that the internal micro-force

g ¼ gdis � g ¼ �b _P � @H
@P

ð14Þ

has a dissipative and a non-dissipative contribution. An evaluation
of the residual dissipation inequality leads to a generalized form of
the Ginzburg–Landau equation (Schrade et al., 2013):

b _P ¼ divRþ f� @H
@P

: ð15Þ

We limit ourselves to Dirichlet and Neumann boundary condi-
tions and neglect the vacuum polarization outside of B:

u� u� ¼ 0 on @Bu;rn� t� ¼ 0 on @Br;

u�u� ¼ 0 on @Bu;D � nþ q�s ¼ 0 on @BD;

P � P� ¼ 0 on @BP ;Rn� p� ¼ 0 on @BR;

ð16Þ

where t�;q�s , and p� are prescribed surface tractions, surface charge
densities, and polarization fluxes, respectively. Initial values for the
order parameter are prescribed at every material point by
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