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proven) ‘molecular conjecture’.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

[sostatic systems are both kinematically and statically determi-
nate, and so are fixed in configuration, and have no internal stres-
ses when unloaded, thus allowing high precision placement of
components, as discussed by Maxwell for scientific apparatus in
Section 4 of Maxwell (1876). This has particular engineering rele-
vance in harsh thermal environments such as space (Bujakas and
Rybakova, 1998). Isostatic systems are able to react to changes in
shape of their constituent bodies by deforming without building
up internal stresses, and hence find application as ‘parallel’ robots,
such as the Stewart platform (Stewart, 1965), deployable struc-
tures (Miura et al., 1985) and easily driven adaptive structures (Ba-
ker and Friswell, 2009).

In general, symmetry arguments give powerful tools for the
detection of hidden mechanisms in structures that scalar counting
arguments would predict to be isostatic. There are also many
examples of highly symmetric structures that counting without
symmetry predicts to be over-constrained, but which have mecha-
nisms that are revealed by symmetry-extended counting rules
(Roschel, 2002, 2012; Chen et al., 2012). The symmetry approach
has already been used to develop symmetry-extended mobility cri-
teria for bar-and-joint (Fowler and Guest, 2000; Connelly et al.,
2009) and body-bar (Guest et al., 2010) frameworks. Here we make
a natural extension to body-hinge structures, as a way of finding
the symmetries of their mechanisms and states of self stress and
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identifying conditions for a symmetric structure of this type to
be isostatic. Two simple examples of body-hinge structures are
shown in Fig. 1.

In addition to the practical goal of explaining mechanisms in
particular systems, the study of symmetry aspects of body-hinge
structures has another motivation. The long-standing ‘molecular
conjecture’ (Tay and Whiteley, 1984) was recently proved (Katoh
and Tanigawa, 2011): under generic conditions, a body-hinge
framework and a ‘molecular’ structure with the same underlying
multi-graph have the same rigidity properties. (A molecular struc-
ture, named by analogy with chemical structures, is one in which
the lines of the hinges attached to each body all pass through a
common point in that body. Fig. 1(b) shows an example based on
the propane molecule.)

A recently proposed generalisation is the conjecture that sym-
metric body-bar, body-hinge and molecular structures that all
share a common symmetry and a common underlying multi-graph
will have the same rigidity properties under symmetry-generic
conditions (Porta et al., 2014). Comparison of the analogous sym-
metry counts for body-bar frameworks and the molecular struc-
tures that result from specialisation of the body-hinge systems
considered in the present study could provide extra evidence for
the ‘symmetric molecular conjecture’. The present study also gives
ways of quickly constructing examples of symmetric molecular
structures with small numbers of mechanisms, for comparison
with corresponding body-bar frameworks, hence furnishing exam-
ples for investigation of the symmetric molecular conjecture.

The plan of the paper is as follows. First, the symmetry-ex-
tended mobility rule for body-hinge structures is obtained for
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Fig. 1. Two example body-hinge structures: (a) shows a central panel connected to
two outer panels through simple rotational hinges; (b) shows a model of a propane
molecule in which each of the outer methyl groups is able to rotate about the bond
to the central carbon atom. Each of these structures has two mechanisms, as in each
case the hinges are able to rotate independently of one another.

assemblies of bodies pairwise connected by revolute hinges. Sec-
ondly, we derive general symmetry constraints on isostatic struc-
tures of body-hinge type. Finally, we present constructions for
systems that are predicted to be isostatic by counting without
symmetry, and examine their symmetry counts to determine
whether they have symmetry-detectable mechanisms that are hid-
den by the scalar count.

In what follows, it is assumed that we are working with frame-
works in three dimensions, except when specifically stated that we
are dealing with the restriction of the system to the plane.

2. Background

The simple counting rule for calculating to first order the de-
grees of freedom (or the mobility) m of a mechanical linkage with
b bodies connected by g joints, where joint i permits f; degrees of
freedom, is associated with Griibler and Kutzbach and was given
in the following form by Hunt (1978):

m:6(b—1)—6g+if,u (1)
i=1

The generalised version of this rule that allows for states of self-
stress in the same way as Calladine’s extension (Calladine, 1978) of
Maxwell’s Rule for bar-and-joint frameworks (Maxwell, 1864) is

m—s:6(b71)76g+zg:fi, (2)
i=1

where s is the dimension of the space of self-stresses of the linkage.
Eq. 2 can be derived by considering the dimensions of the four fun-
damental vector subspaces of an equilibrium/compatability matrix,
which can be defined for any set of linearised constraints (see, e.g.,
Guest and Pellegrino (1994) for an example).

A joint which allows exactly one revolute degree of freedom be-
tween the two bodies that it joins is called a hinge. Moreover, a
mechanical linkage is called a body-hinge structure if every joint
of the linkage is a hinge. Our goal is to derive necessary conditions
for a symmetric body-hinge structure to be isostatic, i.e., to have
m=s=0.

Note that for a body-hinge structure with b bodies and h hinges,
(2) becomes

m—s=6(b—h—1)+h=6b—6-5h (3)

(In the restriction to two dimensions, the RHS is

3(b—h-1)+h=3b-3-2h)

3. A symmetry-extended mobility rule for body-hinge
structures

The symmetry-extended version of the generalised mobility
rule (2) is (Guest and Fowler, 2005):

L(m) —I'(s) = (Ir + Tg) x ([(2,C) — I'y(e, €) — To) + I, (4)

where each I is the vector of the traces of the corresponding repre-
sentation matrices in some point group G. Each such I' is known in
applied group theory as a representation of G (Bishop, 1973), or in
mathematical group theory as a character (James and Liebeck,
2001). In applied group theory, the term character is often used
informally for denoting an entry of a representation, i.e., the trace
of a representation matrix (Cotton, 1990) for a given operation.

In (4), I'(m) and I'(s) are the representations of the mobility and
the states of self-stress, respectively. I'r and I'y are the representa-
tions of rigid-body translations and rotations, and can be read off
from standard character tables for point-groups (Atkins et al.,
1970; Altmann and Herzig, 1994). In 3D, I'r + Iy is the six-dimen-
sional I'(Ty,T,,T,)+T'(R«,Ry,R;); in 2D, I't + T} is the three-
dimensional I'(Tx,Ty)+I'(R;), where the system lies in the xy
plane. I'y denotes the trivial representation which takes the value
of one for all group elements.

The other representations are defined in terms of the so-called
(Guest and Fowler, 2005) contact polyhedron C associated with the
given body-hinge structure. C has one vertex for each body of the
structure and two vertices are joined by an edge of C iff the corre-
sponding bodies are connected by a joint. There is some choice in
the construction of C, as we discuss further below. Note that C is
not always a polyhedron in the graph theoretical sense: in some
cases it may correspond to a planar graph, and in some to a non-planar
graph. Further, its geometric embedding may have non-planar
faces, or even degenerate to a polygon. I'(z,C) is the permutation
representation of the vertices of C, and I'; (e, C) is the representation
of a set of vectors along the edges of C. Finally, I'; is the representa-
tion of the total set of freedoms allowed by the joints.

Our previous treatments of mobility (Guest and Fowler, 2005)
deals with hinges of all types, including sliders and screws, but
in the present context, for a body-hinge structure, the symmetry-
extended mobility rule (Guest and Fowler, 2005) equivalent to
(3)1is

T(m) ~T(s) = (T + Te) x (T(,0) = Ty(e,0) ~To) + Ty, (5)

where T’} is the representation of the revolute degrees of freedom
allowed by the hinges (which we will determine below).

The form of the product on the RHS of (5) has one immediate
consequence: as the multiplier (I'r + I'g) has character zero under
all improper operations (i.e., inversion, reflections or rotoreflec-
tions), the character of I'(m) — I'(s) under such operations is deter-
mined entirely by that of the hinge freedoms for those operations.
A second deduction can be made about frameworks that have an
isostatic count of bars and hinges and have no body or hinge lying
on an element of symmetry. Following the reasoning applied to
bar-and-joint frameworks in Fowler et al. (in press), in the present
case it is the bodies and hinges that fall into orbits of size |G|, and all
vertex, edge and hinge representations are multiples of I'ie; (which
has character |G| under the identity, and zero under all other sym-
metry operations). Thus,

F(Z/, C) = bOrreg7
FH(e’ C) =Iy = horreg7

with by = b/|G| and hy = h/|g|. Since the framework has an isostatic
count under the identity operation, we have (in 3D)

(6bo — 5ho)|g] = 6. (6)
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