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a b s t r a c t

In this work we propose to study the behavior of cellular materials using a second-order multi-scale com-
putational homogenization approach. During the macroscopic loading, micro-buckling of thin compo-
nents, such as cell walls or cell struts, can occur. Even if the behavior of the materials of which the
micro-structure is made remains elliptic, the homogenized behavior can lose its ellipticity. In that case,
a localization band is formed and propagates at the macro-scale. When the localization occurs, the
assumption of local action in the standard approach, for which the stress state on a material point
depends only on the strain state at that point, is no-longer suitable, which motivates the use of the sec-
ond-order multi-scale computational homogenization scheme. At the macro-scale of this scheme, the dis-
continuous Galerkin method is chosen to solve the Mindlin strain gradient continuum. At the microscopic
scale, the classical finite element resolutions of representative volume elements are considered. Since the
meshes generated from cellular materials exhibit voids on the boundaries and are not conforming in gen-
eral, the periodic boundary conditions are reformulated and are enforced by a polynomial interpolation
method. With the presence of instability phenomena at both scales, the arc-length path following tech-
nique is adopted to solve both macroscopic and microscopic problems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, cellular materials are used in many engineering
applications because of their attractive properties, e.g. light weight,
high specific stiffness, good damping, high shock absorbability, etc.
(Lorna and Gibson, 1997). Their mechanical properties depend not
only on the intrinsic properties of the materials of which the cell
walls and cell struts are made but also on the micro-morphology,
i.e. the spatial distribution of cells (e.g. size, shape, etc). Because
of the increase of material requirements for specific applications,
for which the required mechanical properties can be achieved by
manipulating the micro-structure, the relation between the struc-
tural behavior and the microscopic properties must be evaluated.

In experimental studies the cellular materials exhibit a complex
mechanical behavior because of the presence of the size effects, as
shown for example by Andrews et al. (2001), and of the localization
phenomena due to micro-buckling of thin components (cell walls,
cell struts), as discussed for example by Papka and Kyriakides
(1998), Zhu and Mills (2000), Bart-Smith et al. (1998), or Jang
and Kyriakides (2009), which may be enhanced by plastic deforma-
tion and reduces strongly the structural stiffness. In finite element
analyzes, there are basically three different approaches used to

study the behavior of cellular materials: (i) the microscopic ap-
proach, (ii) the macroscopic approach, and (iii) the multi-scale
computational approach. In the first approach, the detailed struc-
ture is considered by using the standard finite element formulation
such as beam elements as proposed by Tekoglu et al. (2011), Mang-
ipudi and Onck (in press), Lorna and Gibson (1997) and Chen and
Fleck (2002). However, the use of direct simulations to model large
problems by finite element analyzes can lead to an enormous num-
ber of unknowns. The solution of the resulting equations is still a
challenge for actual modern computers. Therefore, this method is
suitable for the problems with limited sizes. In the second one,
the cellular structure is considered as a continuum medium and
the phenomenological material model is applied, see for example
the works by Forest et al. (2005) and Hanssen et al. (2002).
Although the efficiency is higher than for the first approach, this
method is still limited by the fact that the material model and its
parameters are difficult to be identified. Moreover the micro-struc-
ture evolution during the macroscopic loading cannot be observed.
The last method, also-called FE2, is a combination of the two first
approaches in which two separate boundary value problems
(BVPs) are defined at two separate scales, see Fig. 1. At the macro-
scopic scale, the macroscopic BVP is considered as a continuum
medium and, at the microscopic scale, a microscopic BVP is associ-
ated to each macroscopic material point and contains all heteroge-
neities. Each microscopic BVP is defined on a representative
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volume element (RVE) and is associated with an appropriate
microscopic boundary condition related to the macroscopic quan-
tities, e.g macroscopic strains. The geometrical and material non-
linearities at work on the micro-structure are explicitly modeled
by using an arbitrary geometrically non-linear framework and
arbitrary non-linear constitutive models. From the resolution of
the microscopic BVPs, the macroscopic stress–strain relation is al-
ways available under the form of a homogenized constitutive law
to be used in a macro-scale problem, see for example the develop-
ments by Yvonnet et al. (2007), Laroussi et al. (2002), Ohno et al.
(2002) and Okumura et al. (2004, 2002), or under the form of a
scale transition problem, see for example the developments by
Sehlhorst et al. (2009), Kouznetsova (2002, 2004), Ebinger et al.
(2005) and Onck (2002).

When considering FE2 methods, the scale transition can be for-
mulated as a first-order scheme by using the standard continuum
theory at both macro- and micro-scales (Sehlhorst et al., 2009;
Kouznetsova, 2002) or as a second-order scheme with a general-
ized continuum theory applied at the macro-scale, e.g. a Cosserat
continuum (Ebinger et al., 2005; Onck, 2002) or a Mindlin strain
gradient continuum (Kouznetsova et al., 2004). Compared to the
first-order schemes, the second-order ones can deal with size ef-
fects and some localization phenomena because of the accounting
of the higher-order terms related to the higher-order strains (e.g.
gradient of deformation gradient, etc). However, the second-order
schemes cannot resolve the strong localization bands exhibiting
deformations beyond a quadratic nature in the displacement field
(Geers et al., 2010). In case of a strong localization band, other ap-
proaches should be used, e.g. multi-scale enhanced schemes with a
discontinuity enrichment at the macro-scale, see the work of
Nguyen et al. (2011), Massart et al. (2007) and Coenen et al.
(2012). In spite of their limitations, the second-order schemes are
applicable for moderate localization phenomena in cellular materi-
als. This work is thus restricted to the study of localization onsets
and of moderate loadings for which the self-contact phenomena of
cell walls have not yet happened.

In this work the presence of localization phenomena in cellular
structures motivates the use of the second-order multi-scale com-
putational homogenization scheme using a macroscopic Mindlin
strain gradient continuum (Kouznetsova et al., 2004; Kaczmarczyk
et al., 2008; Nguyen et al., 2013). In this second-order scheme, both
the deformation gradient and its gradient are used to define the
microscopic boundary condition. The macroscopic stresses (first
Piola–Kirchhoff and higher order ones) are calculated by using
the generalized version of the Hill-Mandel homogenization princi-
ple. For cellular materials, the thickness of the localization band is
comparable to or slightly larger than the characteristic size of the
micro-structure. As it will be shown in this paper, although we
are clearly at the edge of the separation of scales, the second-order
homogenization method remains accurate when the localization

band present at the macroscopic scale is of a size larger than the
RVE size. For periodic cellular materials it is the case as the micro-
scopic BVP can be limited to a single cell study. In that case, the
usual microscopic boundary conditions can still be used. Note
however that to capture instability phenomena we introduce some
different randomness in each micro-problem studied at each mac-
roscopic Gauss point. As the instabilities are considered at both
scales, the path following method (Wempner, 1971; Riks, 1979,
1992; Bellini and Chulya, 1987; Fafard and Massicotte, 1993; Zhou
and Murray, 1995; Kouhia and Mikkola, 1999; Grognec and Le van,
2008; Grognec et al., 2009) is used to solve both the macroscopic
and the microscopic BVPs.

In order to solve the Mindlin strain gradient continuum in this
second-order scheme, instead of using a specific finite element for-
mulation as the mixed formulation (Kouznetsova et al., 2004;
Kaczmarczyk et al., 2008), an implementation based on a discon-
tinuous Galerkin method is shown to be particularly efficient to
constrain weakly the continuities of the displacement field and
of its gradient (Nguyen et al., 2013). This method can be easily inte-
grated into conventional finite element codes and parallelized at
the macroscopic scale by using face-based ghost elements (Becker
et al., 2011; Wu et al., 2013). In that context the homogenization is
viewed as a usual constitutive law from the macro-finite element,
and this constitutive law solves another finite-element problem:
the microscopic problem. In order to consider large problems, the
multi-scale problem is not only parallelized at the macro-scale
by face-based ghost elements but also by distributing the micro-
scopic problems of a macro-partition between several processors.

At the microscopic scale, classical finite element resolutions of
RVEs are considered. In a general problem, three classical boundary
conditions, which are linear displacement boundary condition
(Dirichlet condition), minimal kinematic boundary condition (Neu-
mann condition) and periodic boundary condition can be used.
Many numerical studies show that the periodic boundary condi-
tion provides a better estimation than other boundary condition
types (Kanit et al., 2003; Terada et al., 2000; Larsson et al., 2011;
Nguyen et al., 2012). For problems involving localization at the
micro-scale, the boundary condition should be reformulated to ac-
count for this localization direction (Coenen et al., 2012). However,
in this work, the localization bands at the macro-scale have a size
larger than the size of the micro-scale problem and the classical
microscopic boundary conditions can be used. The periodic bound-
ary condition is chosen because of its efficiency. The implementa-
tion of the periodic boundary condition in case of conformal
meshes is easily implemented by constraining matching nodes.
But meshes generated from the cellular materials are normally
non-conformal because of their random spatial distribution. For
these non-conformal meshes, some methods are available to en-
force the periodic boundary condition in first-order schemes, such
as the master/slave approach (Yuan and Fish, 2008), the weak peri-
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Fig. 1. Multi-scale computational modeling of cellular materials: (a) macroscopic homogenized continuum medium and (b) micro-structure with cell walls and void parts. In
the scale transition, the microscopic problem defines its boundary condition depending on the macroscopic strains and computes the macroscopic stresses and macroscopic
tangents.
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