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a b s t r a c t

A mechanical model for analyses of rapid deformation and fracture in three-dimensional fiber materials
is derived. Large deformations and fractures are handled in a computationally efficient and robust way.
The model is truly dynamic and computational time and memory demand scales linearly to the number
of structural components, which make the model well suited for parallel computing. The specific advan-
tages, compared to traditional continuous grid-based methods, are summarized as: (1) Nucleated cracks
have no idealized continuous surfaces. (2) Specific macroscopic crack growth or path criteria are not
needed. (3) The model explicitly considers failure processes at fiber scale and the influence on structural
integrity is seamlessly considered. (4) No time consuming adaptive re-meshing is needed.

The model is applied to simulate and analyze crack growth in random fiber networks with varying den-
sity of fibers. The results obtained in fracture zone analyses show that for sufficiently sparse networks, it
is not possible to make predictions based on continuous material assumptions on a macroscopic scale.
The limit lies near the connectivity lc=L ¼ 0:1, where lc=L is the ratio between the average fiber segment
length and the total fiber length. At ratios lc=L < 0:1 the network become denser and at the limit lc=L! 0,
a continuous continuum is approached on the macroscopic level.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The aim of this work is to derive a numerical three-dimensional
material model to explore the dynamics of rapidly loaded and frac-
turing fiber-based materials. There are many natural materials
based on networks of fibers such as wood, bone, silk, tissue and
organic plants. Examples of engineered fiber materials are fabrics,
composites, textiles and paper. The traditional attempts to model
network materials as continuous materials have not been com-
pletely successful, cf. Kulachenko et al. (2005), Wellmar et al.
(1997) and Heyden et al. (2000). An assumption of macroscopic
continuum has been shown to be a too rough estimation, cf.
Silling and Bobaru (2005), Isaksson and Hägglund (2009a,b) and
Isaksson and Dumont (2014), because certain heterogeneities
linked to the microstructure cannot be captured within the
traditional continuum mechanics framework. Advanced material
modeling approaches are required to complement traditional
methods.

The mechanical behavior of network materials has been the
subject of many studies. Primarily static deformations have been
analyzed, cf. Åslund and Isaksson (2011), Niskanen and Alava
(1994) and Åström et al. (1994). Recently the focus of the mechan-
ical analyses has been shifted toward fracture, cf. Hägglund and
Isaksson (2008), Isaksson and Hägglund (2007), Åström and
Niskanen (2007), Azecedo and Lemos (2006), Fahrenthold and
Horban (2001), Shivarama and Fahrenthold (2004) and Johnson
et al. (2011), and is often based on finite element models, or in
the form of gradient enhanced of non-local fracture methods,
cf. Hägglund and Isaksson (2006) and Isaksson and Hägglund
(2007), but still under quasi-static conditions. However, in some
situations the loading of the material is too rapid to be captured
by quasi-static models as complex dynamic phenomena prevails.
One example, picked from the paper making industry, is in the
‘‘open draw section’’ where strain rates of 2–3% per millisecond
are present. Another example is in high velocity ballistic impact.
In later years a new group of computational models have emerged
which are suited for dynamic problems, called ‘‘hybrid particle
element models’’ developed to deal with e.g. high velocity impact,
cf. Fahrenthold and Horban (2001), Shivarama and Fahrenthold
(2004) and Johnson et al. (2011). When modeling impact, much
of the simulation time is consumed by the search for mechanical
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contact. If this is handled in a more efficient manner there is room
for great improvement in computational speed.

The model derived here is a three dimensional representation of
the mechanical behavior, and works for any type of network mate-
rial, be it thick or thin, sparse or dense. It is well suited for several
types of analyses, including; resonance, flexibility and various
types of fracture behavior. Contacts are dealt with without the
cumbersome search for contact, which greatly improves the com-
putational speed and allow for analysis of very large systems and
long sequence of events. The focus is on dynamical analyses, but
it is also possible to do quasi-static analyses which could be of
interest for large systems since the memory demand scales linearly
to the number of structural components. Special attention is given
to dynamic fracture of thin network materials. A special class of
problems picked from the real world, paper-web break under uni-
axial load, is tackled to exemplify how the model might be utilized.
The fringing shown in Fig. 1 are typical results from a quasi-static
response to uniaxial load. A crack then nucleates from a present
flaw and as the crack rapidly grows, new fringes arise whilst the
existing fringes remain. The last image in the sequence shows
the complete fracture, i.e.when the material is unloaded and the
fringes have disappeared.

2. Theory

2.1. Random fiber network

The materials that are in focus in this study are those consisting
of fibers, initially randomly oriented in a thin structure and on the
macroscopic scale considered being in-plane isotropic. Any matrix
material is ignored. This is a good approximation for e.g. paper,
non-woven felts and polyester textiles. Any shape of the fibers
cross-section can be applied, but the fibers are here idealized to
have square cross-sections with side length h. The model allows
for forces and movement in three dimensions. To assure that the
fibers are evenly distributed over the whole network domain An

some precautions are added when generating the networks. As
shown in Fig. 2, fiber segments reaching outside the domain’s
boundary are moved one side-length in a specified direction and
are so located inside the network domain.

A random network is characterized by its connectivity
lc=L ¼ pAn=½2NL2�, where L is the fiber length, lc the average dis-
tance between two adjacent bonds along a fiber and N is the total
number of fibers in the domain An. There is an upper limit of the
connectivity, called the percolation limit, lc=L � 0:27, meaning that
with a length ratio lc=L above this limit the network is not con-
nected. In the limit lc=L! 0, a continuum is approached on the
macroscopic scale.

2.2. Particle representation

The end of each fiber segment is represented by a particle, with
six degrees of freedom, three translational and three rotational,
illustrated in Fig. 3. Let the deformation tensor lui be the change
in orientation for particle l with original position r0 and present po-
sition r such that lui ¼ ri � r0

i (Fig. 3).
The particles are subjected to forces and move according to

Newton’s mechanics. Moreover, the particles have inertia and mass
according to the fiber segments they represent. With reference to
Fig. 4, particle k holds the mass and moment of inertia for the left
segment part; particle l holds the mass and moment of inertia for
the middle segment, while particle m holds the mass and moment
of inertia for the right segment.

2.3. Fiber-to-fiber bonds

In the network generation process, each fiber is initially repre-
sented by two particles, one in each end. Wherever two fibers
intersect, they form a bond and a new particle is added to each
of the crossing fibers at that point. A bond, illustrated in Fig. 5, is
a massless linear elastic spring having translational and torsional
stiffness and vanishing thickness. The materials that are in focus
have rigid bonds, compared to the rigidity of the fibers, therefore
the spring in the bond is very stiff compared to the fibers in
the network. For another material the bond may be computed in
another fashion, such as freely rotating or to include slip–stick
events, but this is left for future studies. The stiff connection results
in small deformations of the bonds even when the bonds are
translated and rotated in space. The governing equation for a
bond is:

lFb
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2
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Fig. 1. Crack growth in a paper-web under uniaxial tension.

Fig. 2. Illustration of fiber modification to ensure that fiber and bond densities are
similar over the network and have a periodic arrangement. The fiber is cut at the
boundaries and the deserted part is moved one side-length and placed within
the domain. This procedure is repeated until all fiber parts are located within the
domain.

Fig. 3. A particle with six degrees of freedom is moved from position r0 to position r
in a fixed global Cartesian coordinate system.
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