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a b s t r a c t

In this paper, a consistent theory is developed for size-dependent piezoelectricity in dielectric solids. This
theory shows that electric polarization can be generated as the result of coupling to the mean curvature
tensor, unlike previous flexoelectric theories that postulate such couplings with other forms of curvature
and more general strain gradient terms ignoring the possible couple-stresses. The present formulation
represents an extension of recent work that establishes a consistent size-dependent theory for solid
mechanics. Here by including scale-dependent measures in the energy equation, the general expressions
for force- and couple-stresses, as well as electric displacement, are obtained. Next, the constitutive rela-
tions, the uniqueness theorem and the reciprocal theorem for the corresponding linear small deformation
size-dependent piezoelectricity are developed. As with existing flexoelectric formulations, one finds that
the piezoelectric effect can also exist in isotropic materials. However, in the present theory there is only
one flexoelectric constant for isotropic material and the coupling is strictly through the skew-symmetric
mean curvature tensor. In the last portion of the paper, this isotropic case is considered in detail by devel-
oping the corresponding boundary value problem for two dimensional analyses and obtaining a closed
form solution for an isotropic dielectric cylinder.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments in micromechanics, nanomechanics and
nanotechnology require advanced size dependent electromechani-
cal modeling of coupled phenomena, such as piezoelectricity. Clas-
sical piezoelectricity describes the relation between electric
polarization and strain in non-centrosymmetric dielectrics at the
macro-scale (Cady, 1964). However, some experiments have re-
ported about size-effect phenomena of piezoelectric solids and lin-
ear electromechanical coupling in isotropic materials (Mishima
et al., 1997; Shvartsman et al., 2002; Buhlmann et al., 2002; Cross,
2006; Harden et al., 2006; Zhu et al., 2006; Baskaran et al., 2011;
Catalan et al., 2011). The classical theory cannot address this size
dependency, because it considers that matter is continuously dis-
tributed throughout the body by neglecting its microstructure.
Therefore, it is necessary to develop a size-dependent piezoelec-
tricity, which accounts for the microstructure of the material by
introducing higher gradient of deformation. Wang et al. (2004)
have developed a size-dependent piezoelectric theory by consider-
ing the rotation gradient effect in the framework of the couple
stress theory. In this formulation the electric polarization is related
to the macroscopic rotation gradient. However, the theory suffers
from its dependence on an underlying inconsistent couple stress
theory. In some circles this size-dependent character for linear re-

sponse is known as the flexoelectric effect (Kogan, 1964; Meyer,
1969), where the dielectric polarization is related to the macro-
scopic strain gradient or curvature strain. This theory predicts that
in principle the flexoelectric effect is nonzero for all dielectrics,
including the isotropic ones. Although there are some develop-
ments in this direction (Tagantsev, 1986; Maranganti et al., 2006;
Eliseev et al., 2009), these theories also suffer from the use of dif-
ferent inconsistent second order gradients of deformation, as well
as ignoring the possible couple-stress effect. There have been some
experimental studies, which correlate their data with these theo-
ries (e.g., Cross, 2006; Harden et al., 2006; Zhu et al., 2006; Zubko
et al., 2007; Baskaran et al., 2011; Catalan et al., 2011; Morozovska
et al., 2012). It should also be mentioned that the surface effects
(e.g., residual surface stress, surface elasticity) have often been
adopted to analyze the size effects. For example, Pan et al. (2011)
established a continuum theory of surface piezoelectricity for
dielectric materials. However, it seems there is a relation between
the continuum size-dependent piezoelectricity theory and the con-
tinuum theory of surface piezoelectricity, which needs further
development.

Thus, the first step toward developing consistent size-depen-
dent electromechanical theories is the establishment of the consis-
tent size-dependent continuum mechanics theory. Recently,
Hadjesfandiari and Dargush (2011) have resolved the troubles in
the existing size-dependent continuum mechanics. This progress
shows that the couple-stress tensor has a vectorial character and
that the body couple is not distinguishable from the body force.
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In this theory, the stresses are fully determinate and the measure
of deformation is the mean curvature tensor, which is the skew-
symmetrical part of the macroscopic rotation gradient. This devel-
opment can be considered the completion of the works of Mindlin
and Tiersten (1962) and Koiter (1964). Furthermore, this size-
dependent continuum mechanics must provide the fundamental
base for developing different mechanical and electromechanical
formulations that may govern the behavior of solid continua at
the smallest scales. Here, the consistent size-dependent piezoelec-
tric theory is developed, which shows that the size-dependent pie-
zoelectric effect is related to the mean curvature tensor.

In the following section, we provide an overview of the electro-
mechanical equations. This includes the equations for the kinemat-
ics, kinetics and quasi-electrostatics of size-dependent small
deformation continuum mechanics. In Section 3, we consider the
energy equation and its consequences based on the first law of
thermodynamics for dielectric materials. In Section 4, the constitu-
tive relations for linear elastic piezoelectric materials also are de-
rived. Next, we develop two weak formulations in Section 5,
which are used to establish conditions for uniqueness and to derive
the reciprocal identity. Section 6 provides the general theory for
isotropic linear material and the details for two dimensional cases
are derived, including the closed form solution for polarization of a
long cylinder in a uniform electric field. Finally, Section 7 contains
a summary and some general conclusions.

2. Basic size-dependent electromechanical equations

Let us take the three dimensional coordinate system x1x2x3 as
the reference frame with unit base vectors e1; e2 and e3. Consider
a piezoelectric elastic material continuum occupying a volume V
bounded by a surface S. In size-dependent continuum theory, the
interaction in the body is represented by true (polar) force-stress
rij and pseudo (axial) couple-stress lij tensors. The force-traction
vector tðnÞi and moment-traction vector mðnÞi at a point on surface
element dS with unit normal vector ni are given by

tðnÞi ¼ rjinj ð1Þ

mðnÞi ¼ ljinj ð2Þ

The force-stress tensor is generally non-symmetric and can be
decomposed as

rji ¼ r jið Þ þ r ji½ � ð3Þ

where r jið Þ and r ji½ � are the symmetric and skew-symmetric parts,
respectively. Hadjesfandiari and Dargush (2011) have shown that
the axial couple-stress tensor is skew-symmetrical

lji ¼ �lij ð4Þ

This means the moment-traction mðnÞi given by (2) is tangent to the
surface. As a result, the couple-stress tensor lij creates only bending
moment-traction on any arbitrary surface in matter.

We can define the true (polar) couple-stress vector li dual to
the tensor lij as

li ¼
1
2
eijklkj ð5Þ

where eijk is the permutation tensor or Levi–Civita symbol. This
relation can also be written in the form

eijklk ¼ lji ð6Þ

Consequently, the surface moment-traction vector mðnÞi reduces to

mðnÞi ¼ ljinj ¼ eijknjlk ð7Þ

which is obviously tangent to the surface.

To formulate the fundamental equations, we consider an arbi-
trary part of this electromechanical body occupying a volume Va

enclosed by boundary surface Sa. In infinitesimal deformation the-
ory, the displacement vector field u x; tð Þ is so small that the veloc-
ity and acceleration fields can be approximated by _u and €u,
respectively. As a result, the linear and angular equations of motion
for this part of the body are written asZ

Sa

tðnÞi dSþ
Z

Va

FidV ¼
Z

Va

q€uidV ð8Þ

Z
Sa

eijkxjt
ðnÞ
k þmðnÞi

h i
dSþ

Z
Va

eijkxjFkdV ¼
Z

Va

eijkxjq€ukdV ð9Þ

where Fi is the body force per unit volume of the body, and q is the
mass density. Hadjesfandiari and Dargush (2011) have shown that
the body couple density is not distinguishable from body force in
size-dependent couple stress continuum mechanics and its effect
is simply equivalent to a system of body force and surface traction.

By using the relations (1) and (2) for tractions in the equations
of motion (8) and (9), along with the divergence theorem, and
noticing the arbitrariness of volume, we finally obtain the differen-
tial form of the equations of motion as

rji;j þ Fi ¼ q€ui ð10Þ

lji;j þ eijkrjk ¼ 0 ð11Þ

Since the couple-stress tensor lji is skew-symmetric, the angular
equilibrium Eq. (11) gives the skew-symmetric part of the force-
stress tensor as

r ji½ � ¼ �
1
2
eipqlqp;j ¼ �l i;j½ � ð12Þ

Therefore, for the total force-stress tensor we have

rji ¼ r jið Þ þ r ji½ � ¼ r jið Þ � l i;j½ � ð13Þ

As a result the linear equation of motion reduces to

½r jið Þ � l i;j½ ��;j þ Fi ¼ q€ui ð14Þ

It is seen that the sole duty of the angular equilibrium Eq. (11) is to
produce the skew-symmetric part of the force-stress tensor.

In infinitesimal deformation theory, we may assume

@ui

@xj

����
����� 1;

@2ui

@xj@xk

�����
������ 1

lS
ð15Þ

where lS is the smallest characteristic length in the body. Therefore,
the infinitesimal strain and rotation tensors are defined as

eij ¼ u i;jð Þ ¼
1
2

ui;j þ uj;i
� �

ð16Þ

xij ¼ u i;j½ � ¼
1
2

ui;j � uj;i
� �

ð17Þ

respectively. Since the true (polar) tensor xij is skew-symmetrical,
one can introduce it corresponding dual axial (pseudo) rotation vec-
tor as

xi ¼
1
2
eijkxkj ð18Þ

The infinitesimal pseudo (axial) mean curvature tensor is also de-
fined as

jij ¼ x i;j½ � ¼
1
2

xi;j �xj;i
� �

ð19Þ

Since this tensor is also skew-symmetrical, its corresponding dual
polar (true) mean curvature vector is
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