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a b s t r a c t

This paper is concerned with a semi-analytical approach to the solution of the axisymmetric indentation
problem for a multilayered elastic half-space. The stress and displacement fields for each layer and the
substrate are derived in closed form by using the Papkovich–Neuber potentials and the Hankel transform.
The bonded or sliding interface conditions between the sub-layers are handled by the use of the appro-
priate transfer matrix, and then the mixed boundary value problem is reduced to a Fredholm integral
equation. Symbolic and numerical computations of the solution are implemented in the symbolic soft-
ware Mathematica in the form of a fast and efficient numerical algorithm, allowing rapid determination
of the load–displacement curves and composite elastic properties for an arbitrary rigid indenter shape. A
series of results for different indenters (flat, conical, spherical and blunted conical punch shapes) and dif-
ferent multilayered composites is presented and discussed.

The complete set of symbolic and numerical computations are provided as supplementary resources
with the paper.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Thin films and surface coatings are of a great importance in the
context of many engineering applications, e.g. for the improvement
of resistance to wear, increasing the strength and toughness of
structural surfaces and the protection of solids in high temperature
or corrosive environments. Multilayered or continuously graded
materials offer the potential for further progress in optimized de-
sign of surface coatings. For the purpose of design optimization,
the knowledge of properties of such materials is crucial. Undoubt-
edly, indentation is the approach most widely used for the identi-
fication of thin film properties spanning the range of scales from
nanometer to macroscopic. The evaluation procedure is based on
the analysis of the indentation curve P–h representing the applied
load P on the indenter with respect to its penetration depth h dur-
ing the loading/unloading test. The simplest approach to the prob-
lem would be to find suitable laws that describe some parts of the
indentation curve, and then to extract the material properties as
fitting parameters. However, even in the presence of such analyti-
cal descriptions, the identification of material properties through
indentation analysis is a difficult inverse problem. As in most cases
of inverse analysis, the direct problem has to be addressed first.

The standard method used in the direct approach to evaluating
Young’s modulus of a homogeneous bulk substrate was initially
developed by Oliver and Pharr (1992) and improved later in Oliver
and Pharr (2004). They proposed a relationship between the initial
unloading slope of the P–h curve and the substrate’s Young’s mod-
ulus. The remaining parameters were obtained by a Finite Ele-
ments Analysis (FEA). Using the Oliver and Pharr framework, Dao
et al. (2001) found a complete set of explicit analytical functions
using dimensional analysis and then FEA. Those functions help
solving the direct problem, i.e. finding the parameters that describe
the loading/unloading slopes of the indentation curve. Also, these
functions can be used for the inverse analysis of the indentation
test. These procedures have been extended for extracting materials
properties of anisotropic solids (Delafargue and Ulm, 2004; Vlassak
and Nix, 1994; Swadener and Pharr, 2001; Vlassak et al., 2003).

For heterogeneous materials, some analytical solutions can be
found in literature. Giannakopoulos and Suresh (1997a,b) devel-
oped solutions for several indenter tips under the assumption that
the depth distribution of the substrate’s Young’s modulus follows a
power law or exponential law. Then Choi et al. (2008a,b) extended
this approach to plastically graded materials using a similar ap-
proach to that of Dao et al. (2001). Nevertheless, often no a priori
assumption can be made regarding the depth distribution of prop-
erties, and hence a multi-layer approach is necessary. Ke and Wang
(2006) developed semi-analytical solutions for the plane strain
problem using linear piecewise property distributions in each
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layer. However, the indentation problem is most often approxi-
mated as axisymmetric. For such problems some solutions have
also been documented in the literature, e.g. the elastic solution of
a homogenous layered half space with perfect interfacial bonding
under axisymmetrical compressive loading carried out by Li and
Chou (1997). Due to the complexity of the integrals involved in
the use of the Hankel transform, the elastic fields for the coating/
substrate system were obtained by a numerical inversion proce-
dure. A different method of solution for the indentation of a thin
film deposited on an elastic substrate and indented by an axisym-
metric rigid punch was presented by Yu et al. (1990). This ap-
proach used the method proposed by Lebedev and Uflyand
(1958) which results in the formulation of a Fredholm integral
equation. The merit of this method of analysis lies in its ease of
numerical implementation and the possibility of its application
to a large range of different indenter tips. Fretigny and Chateaumi-
nois (2007) studied the problem with a constant piecewise distri-
bution of elastic parameters by adopting a matrix formalism.
They investigated the case of one layer over a substrate, but gave
directions on how to generalize the method of solution to multilay-
ered solids. Tang et al. (2008, 2009) studied experimentally and
numerically the elastic modulus of metal-ceramic nanolaminates
measured by axisymmetric nanoindentation. The elastic modulus
of the multilayer was obtained according to the method proposed
by Oliver and Pharr (1992). Recently, Korsunsky and Constantine-
scu (2009) used the technique of Yu et al. (1990) in order to study
the influence of punch tip sharpness on the interpretation of inden-
tation measurements for the layered elastic half-space. Perfectly
bonded or freely sliding boundary conditions between the film
and the substrate were taken into account. The authors considered
axisymmetric indenters with different tip shapes, namely, the flat
punch, spherical indenter, as well as conical and blunted conical
indenters.

In this work, we consider the frictionless axisymmetric indenta-
tion of a multilayer lying on a semi-infinite elastic substrate. This
problem can be seen as the indentation of an elastically graded
material with constant piecewise distributions. Extending Korsun-
sky and Constantinescu’s (2009) approach for a single layer to an
arbitrary number of layers on a dissimilar substrate, we present a
symbolic/numerical method of solution of the direct problem for
several rigid indenter shapes. The use of symbolic computation
permits several goals to be achieved, namely: (i) to verify the accu-
racy of the closed form solutions and to eliminate coding errors, (ii)
to create a numerical code that performs the computation for n
layers, where the number n is not predefined. Compared to the Fi-
nite Element Method, this approach is not limited by the size of
elements that represent the thickness of the layers, and a better
parametric understanding of the deformation phenomena during
indentation becomes possible.

2. The multilayer coating indentation problem

Let us consider a multilayer composed of n layers deposited
upon a half-space and being indented by an axisymmetric rigid
punch as shown in Fig. 1. Both the layers and and the half-space
are assumed to be homogeneous with a linear isotropic elastic
behavior. The layers are indexed by i ¼ 1;n with increasing depth,
each characterized by thickness hi, shear modulus li and Poisson’s
ratio mi.

For the rigid, axially symmetric indenter, four different shapes
are considered next: the flat punch, the spherical cap, the sharp
conical indenter and the blunted conical indenter (see sketches
in Fig. 2).

The contact is considered to be frictionless and the problem is
treated under the assumption of small strains. Cylindrical coordi-

nates ðr; h; zÞ are used, with z > 0 pointing into the substrate, and
each problem posed in terms of (i) the elasticity equations for each
layer and the half space, (ii) the boundary conditions between lay-
ers, and (iii) the contact boundary conditions between the indenter
and the first layer.

The elastic displacement and stress fields will be expressed in
terms of the Papkovich–Neuber displacement potentials, given by
the harmonic vector and the scalar function Wj ¼ 0;0;Wj

� �
and

/j respectively. (For a complete presentation of the Papkovich–
Neuber potentials see, for example (Constantinescu and Korsunsky,
2007; Robert and W., 1999; Solomon, 1968)). The harmonicity of
the potentials insures that the equations of linear isotropic elastic-
ity are satisfied in each layer.

The elastic displacement and stress fields are given by:

2lju
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where jj ¼ 3� 4mj; u
j
r; u

j
z denote the components of the displace-

ment vector, rj
zz;rj

rz are the components of the stress tensor and
the superscript j denotes the number of layer, and refer to the sub-
strate if j ¼ nþ 1.

Under the assumption of axial symmetry, the harmonic poten-
tials wi and /i can be expressed as the Hankel transform of four un-
known arbitrary functions (Yu et al., 1990) Ai

1ðkÞ;A
i
2ðkÞ;A

i
3ðkÞ;A

i
4ðkÞ.

The potentials in each layer i, for ðr; zÞ 2 ½0;þ1½�½zi�1; zi�, are gi-
ven by:

wiðr; zÞ ¼
Z 1

0
Ai

1 coshðkðz� zi�1Þ þ Ai
2 sinhðkðz� zi�1ÞÞ

� �

� J0ðkrÞ
sinhðkðzi � zi�1ÞÞ

dk ð5Þ

/iðr; zÞ ¼
Z 1

0
Ai
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� J0ðkrÞ
k sinhðkðzi � zi�1ÞÞ

dk ð6Þ

where sinhð Þ and coshð Þ are the hyperbolic sine and cosine func-
tions and J0 is the Bessel function of first kind of order zero.

For the substrate, the expressions for the potentials are:

wnþ1ðr; zÞ ¼
Z 1

0
A5ðkÞ expð�kðz� znÞÞJ0ðkrÞdk ð7Þ

unþ1ðr; zÞ ¼
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k
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It may be seen that the expressions for the potentials in (6)–(8) en-
sure that stresses and their derivatives vanish in the layers for z > 0
if r !1 and in the substrate for r > 0 if z!1.

The boundary conditions between two successive layers i and
iþ 1 are described either as a perfect bonding or as frictionless
sliding.

Perfectly bonded layers impose the continuity of displacements
and surface tractions (hence continuity of stress components zz
and rz) at the respective interface:

ui
zðr;hÞ ¼ uiþ1

z ðr;hÞ ð9Þ
ui

rðr;hÞ ¼ uiþ1
r ðr;hÞ ð10Þ

ri
zzðr;hÞ ¼ riþ1

zz ðr;hÞ ð11Þ
ri

rzðr;hÞ ¼ riþ1
rz ðr;hÞ ð12Þ

Frictionless sliding between layers imposes the continuity of nor-
mal components of displacement and surface tractions and the
vanishing of tangential surface traction:
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