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a b s t r a c t

The paper deals with the evaluation of the effective elastic properties in the framework of domain decom-
position. The field of random fibre composites, for which the network of heterogeneities is complex and
leads to several numerical shortcomings, is considered. 2D representative volume elements (RVEs) of the
composite are generated and some elastic properties are estimated with the help of the double-scale
homogenization. Such methodology is reliable but turns out to be potentially inefficient due to the
required size of RVEs. Two adaptations of domain decomposition methods in the framework of dou-
ble-scale homogenization are proposed to drastically reduce the calculation costs: a Schur complement
method, and a mixed Schur complement and FETI-1 method. Several numerical tests are performed
which highlight reliability and efficiency of the first one in the present context.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fibre composites could lead to interesting applications in the
industrial field. Their lightness associated to a high stiffness, a good
electrical conductivity and a low cost of production are major as-
sets which arouse a great interest in the engineering community.
Random fibre composites are composed of randomly distributed
and oriented fibres. Experimental measurements are sometimes
difficult to set up when, for example, we consider very small scales
as in nanocomposites field. In the present paper, the framework of
a numerical simulation of random fibre composites is considered in
the prospect of the assessment of effective elastic properties. Such
a kind of process requires the generation of representative volume
elements (RVEs). An RVE can be defined as a volume V large en-
ough to take into account enough informations on the microstruc-
ture of the medium (Hill, 1963; Hashin, 1983) and sufficiently
small to limit the calculation cost and respect a minimum scale ra-
tio with the macroscopic material (Kanit et al., 2003). Conse-
quently, a key issue is related to the assessment of the
dimensions of the RVE which strongly impact the validity of the
numerical evaluation. Two methodologies are possible (1) One
can construct a large RVE which includes a large number of heter-
ogeneities, inclusions, voids, grains, fibres, . . .(2) One can generate

a sampling of small RVEs for which effective properties are ob-
tained from averaging the scope of results (Kanit et al., 2003; Pel-
issou et al., 2009). The second approach is known as being the most
efficient (Leclerc et al., 2012; Leclerc et al., 2013) since large RVEs
cannot be handled. However, a great care must be taken when
choosing the dimensions of the small cells. Indeed an RVE has to
be large enough to avoid a bias introduced by the boundary condi-
tions (Sab, 1992; Ostoja-Starzewski, 1998) and ensure the accuracy
of the macroscopic response (Drugan and Willis, 1996).

In the present work, our choice is to consider the second ap-
proach for which the size of the RVE is assessed according to the
methodology of Kanit et al. (2003). A random draw of a complete
set of morphological parameters, namely the length, diameter, ori-
entation and spatial distribution of fibres, is set up to generate one
RVE. In addition, intersections between two or more fibres are al-
lowed which leads to a strongly entangled network of heterogene-
ities. Such a geometrical complexity requires a pixel-based finite
element simulation to get round the tricky step of the mesh gener-
ation (Mishnaevsky, 2005). We consider the model with an n-order
approximate geometry which was studied in this context and
exhibited interesting results in calculation time (Leclerc et al.,
2012; Leclerc et al., 2013). The basic idea consists in conceiving
the mesh according to a structured grid of quadrangular elements
the size of which is equal to the effective diameter of fibres. Thus,
the critical shortcoming related to the complex geometry of the
network of heterogeneities is a priori solved.

However, the required size of simulation grids are sometimes
really important. For example, when the spatial distribution is
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inhomogeneous which leads to consider a large representative pat-
tern to efficiently take into account the microstructure of the net-
work of fibres (Jeulin and, 2005; Jeulin and Moreaud, 2006; Jeulin
and Moreaud, 2006). The efficiency of the method is then drasti-
cally reduced causing the explosion of the calculation cost. One
obvious solution in the current context of the fast development
of multi-core computations is to use parallel strategies. Domain
decomposition provides a solid mathematical framework which
is modified to suit such a kind of process. Non-overlapping domain
decomposition methods such as Schur complement (Agoshkov and
Lebedev, 1985) and FETI-1 methods (Fahrat and Roux, 1227; Fahrat
and Roux, 1994) have been extensively studied in this purpose dur-
ing the last two decades. Thus, their robustness and scalability
have been demonstrated and have led to numerous practical appli-
cations. Their great advantage is to reduce a global problem to an
interface problem for which the degrees of freedom number is
widely less important and the conditioning is improved. The Schur
complement method is based on the displacements while the FETI-
1 focuses on the Lagrange multipliers. Each concept has its own
advantages and drawbacks.

The aim of the paper is to adapt the Schur complement and
FETI-1 methods in the framework of the periodic double-scale
homogenization (Bensoussan et al., 1978; Sanchez-Palencia,
1980). This latter is a powerful tool to assess effective elastic prop-
erties, particularly in the fibre composites field. Both domain
decomposition methods are modified in such a manner that they
directly provide mechanical coefficients such as Young’s and shear
moduli ones. Some numerical tests are performed on a set of
100 RVEs which are randomly generated depending on a complete
set of morphological parameters. Each square representative pat-
tern is subdivided into several similar subdomains for which the
continuity on the inner interfaces and the periodicity on the outer
ones are ensured. First the reliability of both methods is sequen-
tially investigated. Results highlight their suitability in the context
of high contrast heterogeneous media. Second C++ parallel algo-
rithms are set up with the help of MPI libraries. Both issues of effi-
ciency and ideal number of subdivisions are discussed. The paper is
outlined as follows, (1) a reminder of both the theoretical frame-
work of the double-scale homogenization and the associated opti-
mization problem are done (2) A description of both modified
domain decomposition methods is performed (3) Numerical re-
sults are provided to evaluate their reliability and efficiency in
the framework of random fibre composites with a high contrast
of properties.

2. Double-scale homogenization

This section is devoted to a reminder of the theoretical frame-
work of the double-scale homogenization. We describe both the
asymptotic principle which the method is based on and provide
the associated variational formulation. Expression of homogenized
elastic properties is provided in the context of domain
decomposition.

2.1. Setting up

The variational formulation presented and proposed in this sec-
tion is a generalization of the technique for the calculation of
homogenized coefficients (Débordes, 1986) in an asymptotic
framework (Bensoussan et al., 1978; Sanchez-Palencia, 1980).
The basic idea consists in introducing an additional fictitious vari-
able in test functions, which leads to a symmetric bilinear form
taking into account two unknowns related to (1) the macroscopic
strain field E (2) the microscopic strain field eklyðuÞ. The artifice al-
lows one to directly evaluate homogenized coefficients, but also

amounts to introducing a field representing the macroscopic stress
one R. Therefore, this term becomes a changeable data for the var-
iational problem and has to be imposed in such a clever way so
that this one leads directly to homogenized coefficients. The choice
of the variational formulation is related to the fact that, as we will
show thereafter, this one is well adapted to the domain decompo-
sition technique. This remains true providing that great care is ta-
ken in the treatment of periodic boundary conditions and internal
nodes common to different subdomains.

In the general context of periodic homogenization, strain e and
stress r fields are supposed Y-periodic where Y is a unit cell (Born-
ert et al., 2001; Magoariec et al., 1675). The strain field eklðuÞ is
then described as the sum of E regardless to local fluctuations,
and a Y-periodic displacement uper as follows,

eklðuÞ ¼ Eþ eklðuperÞ ð1Þ

where the average value of eklðuperÞ over Y is equal to zero.
In the context of linear elasticity and a periodic multi-scale ap-

proach, a localization problem for which E is given, leads to the fol-
lowing equation,

�divrðueÞ ¼ f inY ðþperiodic b:c: on @YÞ
rijðueÞ ¼ Ce

ijkhekhðueÞ

(
ð2Þ

where Ce
ijkl is the local stiffness tensor, f is the loading and b.c.

stands for boundary conditions. @Y represents the boundary of Y.
From a theoretical point of view, e is a positive real parameter
which is supposed to tend to zero. Practically, this one is a very
small parameter (e < 10�3) which is the ratio between a first scale
called macroscopic and denoted as x, and a second one called micro-
scopic and denoted as y. The displacement is denoted as ue ex-
panded according to the e parameter. We seek for an asymptotic
expansion as the form,

ueðx; yÞ ¼ u0ðxÞ þ eu1ðx; yÞ þ e2u2ðx; yÞ þ oðe2Þ ð3Þ

Hence, after expanding and reordering, we deduce the following
expression of the strain tensor,

eklðueÞ ¼ eklxðueÞ þ 1
e

eklyðueÞ

¼ ðeklxðu0Þ þ eklyðu1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e0

kl

þe ðeklxðu1Þ þ eklyðu2ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e1

kl

þoðeÞ ð4Þ

with,
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ð5Þ

where h denotes the h-th component of the asymptotic expansion
of ue. In addition,

rijðueÞ ¼ Ce
ijklðeklxðu0Þ þ eklyðu1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

r0
ij

þe Ce
ijklðeklxðu1Þ þ eklyðu2ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

r1
ij

þoðeÞ

ð6Þ

thus,

eh
kl ¼ eklxðuhÞ þ eklyðuhþ1Þ 8h 2 N ð7Þ

rh
ij ¼ Ce

ijklðeklxðuhÞ þ eklyðuhþ1ÞÞ 8h 2 N ð8Þ

Let us remark that e0
kl is then strongly analogous to the formu-

lation of eklðuÞ described in Eq. (1). Indeed, one can see eklxðu0Þ as
the macroscopic strain field E and eklyðu1Þ as the microscopic peri-
odic strain field the average over Y of which is equal to 0. In other
words, the first order of the asymptotic expansion of eklðueÞ leads to
the classical formulation of the strain field in periodic homogeniza-
tion theory.
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