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a b s t r a c t

An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped
cracks located at the interface between two dissimilar solids. The approximation is based on the factor-
ization of the solution on the material dissimilarity factor, the crack interaction factor and the effective
spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact
and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is
obtained using a recently developed model for stress intensity factors for an array of coplanar penny
shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained
for non-interacting penny shaped crack at the interface between two dissimilar materials is employed.
The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness
in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading
and environmental factors.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Bonded structures are widely used in various products and de-
vices to improve structural durability and strength. The wide appli-
cation of adhesive bonds in the aerospace industry for both
aluminum and composite structures is well documented. In the
field of dentistry, resin-retained ceramic restorations are per-
formed to protect the remaining teeth and restore mechanical
function without loss of aesthetics (Wang et al., 2007). Bonded
interfaces are often compromised due to imperfect bonding condi-
tions and degradation over time caused by various mechanical/
thermal loadings and environmental factors. Micromechanical
interfacial damage such as micro-cracks or micro-disbonds forms
at the interfacial region and threatens the overall structural
integrity.

Ultrasound methods are widely used to detect nondestructively
different types of interfacial damage (Buck et al., 1989; Thompson
and Thompson, 1991; Wang and Rokhlin, 1991; Margetan et al.,
1992; Nagy, 1992; Rokhlin et al., 2004; Katoh et al., 2002; Milne
et al., 2011). One approach in modeling elastic wave interaction

with planar defects at the interface, such as micro-cracks or mi-
cro-disbonds, is to replace the microdefects-induced reduction in
static stiffness by a continuous, uniform distribution of springs at
the interface (Baik and Thompson, 1984; Sotiropoulos and Achen-
bach, 1988; Margetan et al., 1988; Lavrentyev and Rokhlin, 1994;
Drinkwater et al., 1996; Delsanto and Scalerandi, 1998; Baltazar
et al., 2003). This quasi-static approximation is demonstrated to
be effective in modeling wave interactions at low frequencies,
where the size of the damage is much smaller than the wavelength
(Angel and Achenbach, 1985). The second approach is applicable
when an interphase of finite thickness is formed because of mate-
rial processing. This interphase has is its own constitutive proper-
ties affected by microdefects and if the microdefects are smaller
than the interphase thickness their effect can be described by
effective elastic properties (see for example Kachanov, 1994). Next,
often when the wavelength is larger than the original layer thick-
ness, an interphase between two media is replaced by an infinitely
thin interface with appropriate boundary conditions, which is
advantageous in solving the wave interaction problem (Rokhlin
and Wang, 1991; Rokhlin and Huang, 1993; Hudson et al., 1997;
Singher et al., 1994; Benveniste, 2006). For comparison of those
two approaches see, for example, Lavrentyev and Rokhlin (1994)
and Liu et al. (2000).

The objective of this work is to analyze the planar microdefects
(microdisbonds) on an interface between two different solids. Such
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defects are modeled as an array of planar cracks, which are re-
placed by a continuum distribution of artificial springs at the inter-
face, where the springs are selected in such a way that the stiffness
reduction of the interface under far field loading is equivalent to
that of the interface with an array of cracks. In order to be able
to assess the bond integrity and the remaining life, accurate esti-
mation of the percentage of disbond area (Palmer et al., 1988; Lav-
rentyev and Beals, 2000) is important. For this purpose, explicit
expressions relating the spring stiffness constants to the crack
geometry and density at the interface are desirable. For example,
Baik and Thompson (1984) obtained the expression for effective
normal spring stiffness for a planar array of periodically spaced
strip cracks in a homogeneous material. They also obtained the
corresponding expression for a single penny-shaped crack in a
homogeneous material. Margetan et al. (1988) suggested an
approximate expression for transverse spring stiffness for a single
penny-shaped crack in a homogeneous material. Modifications of
the Baik and Thompson (1984) and Margetan et al. (1988) methods
were used by Lavrentyev and Rokhlin (1994) for an approximate
description of an array of penny-shaped cracks between dissimilar
materials in adhesive joints.

Most recently, Lekesiz et al. (2011a) obtained explicit analytical
expressions for the normal and transverse effective spring stiff-
nesses of a planar periodic array of collinear cracks at an interface
between two dissimilar isotropic materials based on the open
crack model (Rice, 1988; Hutchinson and Suo, 1992). They (Lekesiz
et al., 2011b) also obtained the normal and transverse spring stiff-
ness expressions for a single penny-shaped crack at an interface
between two dissimilar isotropic materials.

Most bonded interfaces consist of two dissimilar materials and
micro-cracks or micro-disbonds at the interface are better repre-
sented by penny-shaped cracks than planar cracks. In addition,
crack interactions play an important role in assessing the remain-
ing life of bonded structures. Currently, however, there is no frac-
ture mechanics based relationship between interfacial effective
spring stiffness and crack density for interacting penny-shaped
cracks at an interface between two dissimilar isotropic solids; such
an approximate explicit relationship is obtained in this work.

2. Problem formulation for effective spring stiffness of cracked
interface

The outline of our approach is presented schematically in Fig. 1.
First, Fig. 1(a), the distributed effective interface spring stiffness is
obtained to describe a periodic array of coplanar penny-shaped
cracks between two identical elastic semispaces, and the effect of
crack interactions on the spring stiffness is examined. For this,
the array of planar cracks in the material is replaced by an artificial
interface with a continuum distribution of springs utilizing our re-
cent results (Lekesiz et al., 2013) where the effect of crack interac-
tions on the stress intensity factors for a periodic array of coplanar
penny-shaped cracks in a homogeneous material is obtained based
on the approximate method by Kachanov and his co-workers
(1985, 1987, 1989, 1994). Second, Fig. 1(b), the effect of material
dissimilarity on the equivalent spring stiffness for a single (non-
interacting) penny-shaped crack at an interface between two dis-
similar materials is examined based on the work by Lekesiz et al.
(2011b). Finally, similarly to the exact results by Lekesiz et al.
(2011a) for an infinite array of 2D collinear cracks between two
dissimilar solids, the effective spring stiffness is expressed in terms
of three factors: crack interactions, material dissimilarity, and the
spring stiffness of a single crack. Combining the crack interaction
and material dissimilarity factors as shown in Fig. 1(a) and (b),
respectively, and utilizing the effective spring stiffness for single
penny shaped crack in a homogeneous material, we propose an

approximate but explicit analytical expressions for equivalent
spring stiffness for a periodic array of interacting penny-shaped
cracks at an interface between two dissimilar materials as shown
in Fig. 1(c).

The notion of the effective spring stiffness as depicted in Fig. 1
can be briefly described as follows. The far field displacement, D,
can be separated into a displacement component without cracks,
Dno-crack, and an additional displacement due to the presence of
cracks, Dcrack, as follows.

D ¼ Dno�crack þ Dcrack ð1Þ

The idea (Baik and Thompson, 1984; Margetan et al., 1988; Lek-
esiz et al., 2011a) is to replace cracks by continuously distributed
interfacial springs with the effective spring stiffness, k, such that
they provide the same additional interface compliance (additional
displacement Dcrack) as that due to the cracks.

kN ¼
p0

DN;crack
; kT ¼

t0

DT;crack
ð2Þ

where the subscripts N and T, respectively, denote the normal and
transverse directions and p0 and t0, respectively, are the normal
and shear traction applied at infinity.

The additional displacements can be determined using Castigli-
ano’s theorem, extended for cracked bodies (Tada et al., 2000), as in

DN;crack ¼
@UN

@Q N
DT;crack ¼

@UT

@Q T
ð3Þ

where QN ¼ pb2ðp0Þ and QT ¼ pb2ðt0Þ, respectively, represent the
applied normal and transverse forces by considering the unit cylin-
drical cell with a circular cross sectional area p b2 corresponding to
the crack #1 region. The strain energies due to normal and shear
tractions are respectively denoted by UN and UT. In obtaining the
effective elastic spring stiffness for interacting coplanar penny-
shaped cracks in a homogenous material in Eq. (2) (see Fig. 1(a)),
we will first obtain the strain energy based on stress intensity fac-
tors, and then generalize this problem to the cracked interface be-
tween two solids.

3. Effective spring stiffness for a periodic array of interacting
coplanar penny-shaped cracks at the interface between
identical isotropic semispaces

3.1. Stress intensity factors

Consider a periodic array of coplanar penny-shaped cracks in an
infinite medium subjected to remote normal and shear tractions as
shown in Fig. 1(a). The hexagonal crack configurations (with crack
radius a and crack periodicity b) as shown in Fig. 2(a) is considered.
Lekesiz et al. (2013) numerically obtained the mode I, II and III
stress intensity factors (SIFs), KI, KII and KIII for these interacting
cracks as a function of crack density and the angle along the crack
edge based on the approximate method developed by Kachanov
and Laures (1989). The basic procedure for this analysis is summa-
rized below.

The problem of N cracks subjected to remote tractions at infin-
ity are replaced by equivalent problems where crack faces are
loaded with normal and shear tractions, p0 and t0, respectively,
and stresses vanishing at infinity. These equivalent problems with
N cracks can be separated into N boundary value problems with
each containing a single crack loaded by tractions which include
crack interactions. Letting N go to infinity and using the fact that
these N problems become identical, it is shown that the average
traction for any crack (say crack #1) is magnified by a constant fac-

tor 1�
P1

j¼2K
zz
j1

� ��1
due to crack interactions. The factor Kzz

j1 is
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