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a b s t r a c t

This work describes a computational homogenization methodology to estimate the effective elastic–plas-
tic response of random two-phase composite media. It is based on finite element simulations using three-
dimensional cubic cells of different size but smaller than the deterministic representative volume ele-
ment (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic
heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A
specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this
approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer
matrix. It is found that the effective elastic–plastic response of this particulate composite can be accu-
rately determined by computing a sufficient number of small subvolumes of fixed size extracted from
the DRVE and containing different realizations of the random microstructure. In addition, the response
of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover
the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is
given for two examples of particle volume fractions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past five decades, the prediction of the effective
mechanical response of random composite media has been an ac-
tive research area. Many analytical works using homogenization
methods have been done to bound or estimate their effective mate-
rial properties (e.g. Nemat-Nasser and Hori, 1993). These methods
which assume that the effective material properties can be defined
as relations among the volume averages of stress and strain fields
were initially developed within the linear elastic framework. The
well-known Voigt–Reuss and Hashin–Shtrikman (Hashin and
Shtrikman, 1963) bounds are often used to give a useful bound
of the effective properties, but they are too far apart for highly con-
trasted properties of constituents. The direct estimation of the
effective properties can be achieved using approaches based on
the Eshelby equivalent inclusion theory such as the Mori–Tanaka
model (Mori and Tanaka, 1973) or the self-consistent scheme (Hill,
1965). The Mori–Tanaka model considers the heterogeneities di-
luted in the matrix whereas in the self-consistent scheme the
physical approximation is enhanced by incorporating the interac-
tion effects between heterogeneities, see e.g. the papers of Ano-
ukou et al. (2011a, 2011b) for a comparison of these theories.
Although these analytical approaches have reached a high degree

of sophistication and efficiency, and are nowadays well-estab-
lished, it remains quite complex to transpose them to the plastic
regime for which tangent and secant formulations were developed.
In tangent formulations, the effective elastic–plastic response is
computed incrementally by integrating along the loading path
the effective stiffness tensor obtained from the tangent stiffness
tensor of each phase (e.g. Hutchinson, 1970; Ju and Sun, 2001;
Doghri and Friebel, 2005; Zaïri et al., 2011a). In secant formula-
tions, the effective elastic–plastic response is computed from the
secant stiffness tensor of each phase within the nonlinear elastic
framework (Berveiller and Zaoui, 1979; Tandon and Weng, 1988;
Ponte Castaneda and Suquet, 1998). Alternatively to these analyti-
cal approaches, the numerical simulations directly performed on
the microstructure can be of a great help to solve non-trivial
homogenization problems such as the plasticity in random com-
posite media. The material volume used to represent the micro-
structure, namely the representative volume element (RVE), is
therefore of prime importance. Conventionally, the RVE must be
chosen sufficiently large compared to heterogeneities to contain
sufficient information about the microstructure in order to be rep-
resentative, but it must remain small enough, much smaller than
the macroscopic body, in order to be considered as a material vol-
ume element. Drugan and Willis (1996) proposed to define this no-
tion as follows: ‘‘It is the smallest material volume element of the
composite for which the usual spatially constant (overall modulus)
macroscopic constitutive representation is a sufficiently accurate mod-
el to represent the mean constitutive response’’. This definition of the
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‘‘deterministic’’ representative volume element (DRVE) ought to be
verified in the context of elastic–plastic composites. The effective
stress–strain response, defined from spatial averages of stress
and strain fields over the volume element, must be obtained with
a given accuracy. For large-scale computations the computational
cost is a paramount issue and it is appealing to work on volumes
smaller than the DRVE. The use of smaller volumes induces fluctu-
ations of the estimated responses which must be compensated by
averaging over several realizations of the microstructure in order
to get the same estimation as that obtained for the whole volume.
This strategy was proposed by Huet (1990), Hazanov and Huet
(1994), Drugan and Willis (1996) and Kanit et al. (2003, 2006) to
estimate the linear elastic response of heterogeneous materials
and it is extended in the present work to elastic–plastic
composites.

The purpose of the present work is to describe a computational
homogenization strategy to estimate the effective elastic–plastic
response of particulate composites. The methodology is applied
to a specific composite, namely a rubber-toughened thermoplastic
polymer. The numerical estimates of the stress–strain response,
and their scatters, obtained on volumes of fixed size but containing
different realizations of a given volume of the microstructure are
investigated.

The present paper is organized as follows. In Section 2, we pres-
ent the investigated microstructure and the computational meth-
od. The results are presented and discussed in Section 3. Some
concluding remarks are given in Section 4.

2. Computational homogenization

2.1. Microstructure and mechanical properties of the studied polymer
blend

The example of microstructure chosen in the present investiga-
tion to illustrate the methodology is a rubber-toughened poly(-
methyl methacrylate). It is constituted by a disordered
distribution of soft rubbery inclusions in a stiff polymer matrix.
The mechanical properties are known for the two individual con-
stituents and were thoroughly investigated by Zaïri et al. (2011b)
under uniaxial tensile loading. The rubbery inclusions are assumed
linear elastic while the matrix is elastic–plastic. A very large con-
trast exists in the mechanical properties of the constituents. The
Young’s moduli are 1550 MPa and 1 MPa for the matrix and the
inclusions, respectively. The Poisson’s ratios are 0.4 and 0.49,
respectively. The inelastic properties of the matrix were taken from
the experimental data employed by Zaïri et al. (2011b). The choice
of a microstructure with such a contrast in properties allows
enhancing the variability of apparent mechanical responses ob-
tained from small material volume elements. The elastic–plastic
response of rubber-toughened thermoplastic polymers have been
investigated in the past by several authors (Steenbrink et al.,

1997; Socrate and Boyce, 2000; Riku et al., 2008) via numerical
simulations of either a unit cell or a representative microstructure
but never related to the issue of representativity of the volume ele-
ment. By contrast, the representativity of the elastic–plastic re-
sponses obtained from limited domains of the random composite
material is investigated in this work.

2.2. Mesh generation

The finite element (FE) method was chosen for the computa-
tions presented in this work. The FE calculations were carried out
with Zebulon FE software. The 3D microstructure was recon-
structed from 2D images by means of a serial sectioning process.
A numerical procedure was used to randomly generate the 2D
microstructure section by section. These images have being assem-
bled to generate the wanted 3D cubic microstructure. The proce-
dure is illustrated in Fig. 1. The obtained microstructure consists
in randomly distributed non-overlapping identical spherical parti-
cles embedded in the matrix. The volume is considered large en-
ough to represent the investigated microstructure. A FE mesh
was then superimposed on the 3D image using quadratic brick
elements.

2.3. Boundary conditions

The second important issue for the numerical tests after gener-
ating microstructures concerns the boundary conditions (see e.g.
Kanit et al., 2003; Li and Ostoja-Starzewski, 2006) which for a uni-

Fig. 1. 3D image reconstruction from 2D images and finite element mesh.
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Fig. 2. Description of the boundary conditions.
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